1 centre only
2 centre, foci and directrices
3 centre, foci and vertices
4 centre and vertices only
Explanation:
D Given,
\(E: \frac{x^2}{25}+\frac{y^2}{16}=1\)
\(H: \frac{x^2}{25}-\frac{y^2}{16}=1\)
Centre of the ellipse hyperbola \((0,0)\)
Foci of ellipse \(=( \pm\) ae, 0\()\)
So,
\(\mathrm{e}_{\mathrm{E}}=\sqrt{1-\frac{\mathrm{b}^2}{\mathrm{a}^2}}=\sqrt{1-\frac{16}{25}}\)
\(\mathrm{e}_{\mathrm{E}}=\frac{3}{5}\)
So, \(\quad f_E=( \pm \mathrm{ae}, 0)=( \pm 3,0)\)
\(\mathrm{e}_{\mathrm{H}}=\frac{\sqrt{41}}{5}\)
foci of hyperbola : \(( \pm\) ae, 0\()=( \pm \sqrt{41}, 0)\)
Vertices of \(E\) \& H both: \(( \pm \mathrm{a}, 0)\)
\(=( \pm 5,0)\)
Hence, only centre and vertices of \(\mathrm{E} \& \mathrm{H}\). are common