Tangent and Normal to Hyperbola
Hyperbola

120797 The value of \(m\) for which \(y=m x+6\) is a tangent to the hyperbola \(\frac{x^2}{100}-\frac{y^2}{49}=1\) is

1 \(\sqrt{\frac{20}{17}}\)
2 \(\sqrt{\frac{17}{20}}\)
3 \(\sqrt{\frac{3}{20}}\)
4 \(\sqrt{\frac{20}{3}}\)
Hyperbola

120798 The locus of point of intersection of tangents at the ends of normal chord of the hyperbola \(x^2-\) \(\mathbf{y}^2=\mathbf{a}^2\) is

1 \(y^4-x^4=4 a^2 x^2 y^2\)
2 \(y^2-x^2=4 a^2 x^2 y^2\)
3 \(a^2\left(y^2-x^2\right)=4 x^2 y^2\)
4 \(y^2+x^2=4 a^2 x^2 y^2\)
Hyperbola

120799 Intersection of two perpendicular tangents to the hyperbola \(\frac{x^2}{4}-\frac{y^2}{2}=1\) lies on the circle \(\mathbf{x}^2+\mathbf{y}^2=\) \(\qquad\)

1 2
2 12
3 \(\sqrt{2}\)
4 \(2 \sqrt{3} \mathrm{j}\)
Hyperbola

120800 Let \(P(3 \sec \theta, 2 \tan \theta)\) and \(Q(3 \sec \phi, 2 \tan \phi)\) be two points on \(\frac{x^2}{9}-\frac{y^2}{4}=1\) such that \(\theta+\phi=\) \(\frac{\pi}{2}, 0\lt \theta, \phi\lt \frac{\pi}{2}\). Then the ordinate of the point of intersection of the normals at \(P\) and \(Q\) is

1 \(\frac{13}{2}\)
2 \(-\frac{13}{2}\)
3 \(\frac{5}{2}\)
4 \(-\frac{5}{2}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Hyperbola

120797 The value of \(m\) for which \(y=m x+6\) is a tangent to the hyperbola \(\frac{x^2}{100}-\frac{y^2}{49}=1\) is

1 \(\sqrt{\frac{20}{17}}\)
2 \(\sqrt{\frac{17}{20}}\)
3 \(\sqrt{\frac{3}{20}}\)
4 \(\sqrt{\frac{20}{3}}\)
Hyperbola

120798 The locus of point of intersection of tangents at the ends of normal chord of the hyperbola \(x^2-\) \(\mathbf{y}^2=\mathbf{a}^2\) is

1 \(y^4-x^4=4 a^2 x^2 y^2\)
2 \(y^2-x^2=4 a^2 x^2 y^2\)
3 \(a^2\left(y^2-x^2\right)=4 x^2 y^2\)
4 \(y^2+x^2=4 a^2 x^2 y^2\)
Hyperbola

120799 Intersection of two perpendicular tangents to the hyperbola \(\frac{x^2}{4}-\frac{y^2}{2}=1\) lies on the circle \(\mathbf{x}^2+\mathbf{y}^2=\) \(\qquad\)

1 2
2 12
3 \(\sqrt{2}\)
4 \(2 \sqrt{3} \mathrm{j}\)
Hyperbola

120800 Let \(P(3 \sec \theta, 2 \tan \theta)\) and \(Q(3 \sec \phi, 2 \tan \phi)\) be two points on \(\frac{x^2}{9}-\frac{y^2}{4}=1\) such that \(\theta+\phi=\) \(\frac{\pi}{2}, 0\lt \theta, \phi\lt \frac{\pi}{2}\). Then the ordinate of the point of intersection of the normals at \(P\) and \(Q\) is

1 \(\frac{13}{2}\)
2 \(-\frac{13}{2}\)
3 \(\frac{5}{2}\)
4 \(-\frac{5}{2}\)
Hyperbola

120797 The value of \(m\) for which \(y=m x+6\) is a tangent to the hyperbola \(\frac{x^2}{100}-\frac{y^2}{49}=1\) is

1 \(\sqrt{\frac{20}{17}}\)
2 \(\sqrt{\frac{17}{20}}\)
3 \(\sqrt{\frac{3}{20}}\)
4 \(\sqrt{\frac{20}{3}}\)
Hyperbola

120798 The locus of point of intersection of tangents at the ends of normal chord of the hyperbola \(x^2-\) \(\mathbf{y}^2=\mathbf{a}^2\) is

1 \(y^4-x^4=4 a^2 x^2 y^2\)
2 \(y^2-x^2=4 a^2 x^2 y^2\)
3 \(a^2\left(y^2-x^2\right)=4 x^2 y^2\)
4 \(y^2+x^2=4 a^2 x^2 y^2\)
Hyperbola

120799 Intersection of two perpendicular tangents to the hyperbola \(\frac{x^2}{4}-\frac{y^2}{2}=1\) lies on the circle \(\mathbf{x}^2+\mathbf{y}^2=\) \(\qquad\)

1 2
2 12
3 \(\sqrt{2}\)
4 \(2 \sqrt{3} \mathrm{j}\)
Hyperbola

120800 Let \(P(3 \sec \theta, 2 \tan \theta)\) and \(Q(3 \sec \phi, 2 \tan \phi)\) be two points on \(\frac{x^2}{9}-\frac{y^2}{4}=1\) such that \(\theta+\phi=\) \(\frac{\pi}{2}, 0\lt \theta, \phi\lt \frac{\pi}{2}\). Then the ordinate of the point of intersection of the normals at \(P\) and \(Q\) is

1 \(\frac{13}{2}\)
2 \(-\frac{13}{2}\)
3 \(\frac{5}{2}\)
4 \(-\frac{5}{2}\)
Hyperbola

120797 The value of \(m\) for which \(y=m x+6\) is a tangent to the hyperbola \(\frac{x^2}{100}-\frac{y^2}{49}=1\) is

1 \(\sqrt{\frac{20}{17}}\)
2 \(\sqrt{\frac{17}{20}}\)
3 \(\sqrt{\frac{3}{20}}\)
4 \(\sqrt{\frac{20}{3}}\)
Hyperbola

120798 The locus of point of intersection of tangents at the ends of normal chord of the hyperbola \(x^2-\) \(\mathbf{y}^2=\mathbf{a}^2\) is

1 \(y^4-x^4=4 a^2 x^2 y^2\)
2 \(y^2-x^2=4 a^2 x^2 y^2\)
3 \(a^2\left(y^2-x^2\right)=4 x^2 y^2\)
4 \(y^2+x^2=4 a^2 x^2 y^2\)
Hyperbola

120799 Intersection of two perpendicular tangents to the hyperbola \(\frac{x^2}{4}-\frac{y^2}{2}=1\) lies on the circle \(\mathbf{x}^2+\mathbf{y}^2=\) \(\qquad\)

1 2
2 12
3 \(\sqrt{2}\)
4 \(2 \sqrt{3} \mathrm{j}\)
Hyperbola

120800 Let \(P(3 \sec \theta, 2 \tan \theta)\) and \(Q(3 \sec \phi, 2 \tan \phi)\) be two points on \(\frac{x^2}{9}-\frac{y^2}{4}=1\) such that \(\theta+\phi=\) \(\frac{\pi}{2}, 0\lt \theta, \phi\lt \frac{\pi}{2}\). Then the ordinate of the point of intersection of the normals at \(P\) and \(Q\) is

1 \(\frac{13}{2}\)
2 \(-\frac{13}{2}\)
3 \(\frac{5}{2}\)
4 \(-\frac{5}{2}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here