Tangent and Normal to Hyperbola
Hyperbola

120793 If the circle \(x^2+y^2=a^2\) intersects the hyperbola \(x y=c^2\) in four points \(\left(x_i, y_i\right)\) for \(i=1,2,3\) and 4 , then \(\mathbf{y}_1+\mathbf{y}_2+\mathbf{y}_3+\mathbf{y}_4\) equals

1 0
2 \(\mathrm{c}\)
3 a
4 \(\mathrm{c}^4\)
Hyperbola

120794 If \(x=9\) is a chord of contact of the hyperbola \(x^2\) \(-y^2=9\), then the equation of the tangent at one of the points of contact is

1 \(x+\sqrt{3 y}+2=0\)
2 \(3 \mathrm{x}-2 \sqrt{2 \mathrm{y}}-3=0\)
3 \(3 x-\sqrt{2 y}+6=0\)
4 \(x-\sqrt{3 y}+2=0\)
Hyperbola

120795 The foci of the ellipse \(\frac{\mathrm{x}^2}{16}+\frac{y^2}{b^2}=1\) and the hyperbola \(\frac{x^2}{144}-\frac{y^2}{81}=\frac{1}{25}\) coincide. Then, the value of \(b^2\) is

1 5
2 7
3 9
4 1
Hyperbola

120796 The line \(x-y=1\) touches the hyperbola \(3 x^2-4 y^2=12\) at the point

1 \((-4,1)\)
2 \((2,-3)\)
3 \((4,3)\)
4 \((-4,-3)\)
Hyperbola

120793 If the circle \(x^2+y^2=a^2\) intersects the hyperbola \(x y=c^2\) in four points \(\left(x_i, y_i\right)\) for \(i=1,2,3\) and 4 , then \(\mathbf{y}_1+\mathbf{y}_2+\mathbf{y}_3+\mathbf{y}_4\) equals

1 0
2 \(\mathrm{c}\)
3 a
4 \(\mathrm{c}^4\)
Hyperbola

120794 If \(x=9\) is a chord of contact of the hyperbola \(x^2\) \(-y^2=9\), then the equation of the tangent at one of the points of contact is

1 \(x+\sqrt{3 y}+2=0\)
2 \(3 \mathrm{x}-2 \sqrt{2 \mathrm{y}}-3=0\)
3 \(3 x-\sqrt{2 y}+6=0\)
4 \(x-\sqrt{3 y}+2=0\)
Hyperbola

120795 The foci of the ellipse \(\frac{\mathrm{x}^2}{16}+\frac{y^2}{b^2}=1\) and the hyperbola \(\frac{x^2}{144}-\frac{y^2}{81}=\frac{1}{25}\) coincide. Then, the value of \(b^2\) is

1 5
2 7
3 9
4 1
Hyperbola

120796 The line \(x-y=1\) touches the hyperbola \(3 x^2-4 y^2=12\) at the point

1 \((-4,1)\)
2 \((2,-3)\)
3 \((4,3)\)
4 \((-4,-3)\)
Hyperbola

120793 If the circle \(x^2+y^2=a^2\) intersects the hyperbola \(x y=c^2\) in four points \(\left(x_i, y_i\right)\) for \(i=1,2,3\) and 4 , then \(\mathbf{y}_1+\mathbf{y}_2+\mathbf{y}_3+\mathbf{y}_4\) equals

1 0
2 \(\mathrm{c}\)
3 a
4 \(\mathrm{c}^4\)
Hyperbola

120794 If \(x=9\) is a chord of contact of the hyperbola \(x^2\) \(-y^2=9\), then the equation of the tangent at one of the points of contact is

1 \(x+\sqrt{3 y}+2=0\)
2 \(3 \mathrm{x}-2 \sqrt{2 \mathrm{y}}-3=0\)
3 \(3 x-\sqrt{2 y}+6=0\)
4 \(x-\sqrt{3 y}+2=0\)
Hyperbola

120795 The foci of the ellipse \(\frac{\mathrm{x}^2}{16}+\frac{y^2}{b^2}=1\) and the hyperbola \(\frac{x^2}{144}-\frac{y^2}{81}=\frac{1}{25}\) coincide. Then, the value of \(b^2\) is

1 5
2 7
3 9
4 1
Hyperbola

120796 The line \(x-y=1\) touches the hyperbola \(3 x^2-4 y^2=12\) at the point

1 \((-4,1)\)
2 \((2,-3)\)
3 \((4,3)\)
4 \((-4,-3)\)
Hyperbola

120793 If the circle \(x^2+y^2=a^2\) intersects the hyperbola \(x y=c^2\) in four points \(\left(x_i, y_i\right)\) for \(i=1,2,3\) and 4 , then \(\mathbf{y}_1+\mathbf{y}_2+\mathbf{y}_3+\mathbf{y}_4\) equals

1 0
2 \(\mathrm{c}\)
3 a
4 \(\mathrm{c}^4\)
Hyperbola

120794 If \(x=9\) is a chord of contact of the hyperbola \(x^2\) \(-y^2=9\), then the equation of the tangent at one of the points of contact is

1 \(x+\sqrt{3 y}+2=0\)
2 \(3 \mathrm{x}-2 \sqrt{2 \mathrm{y}}-3=0\)
3 \(3 x-\sqrt{2 y}+6=0\)
4 \(x-\sqrt{3 y}+2=0\)
Hyperbola

120795 The foci of the ellipse \(\frac{\mathrm{x}^2}{16}+\frac{y^2}{b^2}=1\) and the hyperbola \(\frac{x^2}{144}-\frac{y^2}{81}=\frac{1}{25}\) coincide. Then, the value of \(b^2\) is

1 5
2 7
3 9
4 1
Hyperbola

120796 The line \(x-y=1\) touches the hyperbola \(3 x^2-4 y^2=12\) at the point

1 \((-4,1)\)
2 \((2,-3)\)
3 \((4,3)\)
4 \((-4,-3)\)