Standard Equation of Ellipse
Ellipse

120530 The locus of the extremities of the latusrectum of the family of ellipses
\(b^2 x^2+y^2=a^2 b^2\) having a given major axis is

1 \(x^2 \pm a y=a^2\)
2 \(y^2 \pm b x=a^2\)
3 \(x^2 \pm b y=a^2\)
4 \(x^2 \pm a x=b^2\)
Ellipse

120531 The locus of the mid point of the line segment joining the point \((4,3)\) and the points on the ellipse \(x^2+2 y^2=4\) is an ellipse with eccentricity:

1 \(\frac{\sqrt{3}}{2}\)
2 \(\frac{1}{2 \sqrt{2}}\)
3 \(\frac{1}{\sqrt{2}}\)
4 \(\frac{1}{2}\)
Ellipse

120532 Let \(P\left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), Q, R\) and \(S\) be four points on the ellipse \(9 x^2+4 y^2=36\), Let \(P Q\) and RS be mutually perpendicular and pass through the origin. If \(\frac{1}{(P Q)^2}+\frac{1}{(R S)^2}=\frac{p}{q}\), where \(p\) and \(q\) are coprime, then \(p+q\) is equal to

1 143
2 137
3 157
4 147
Ellipse

120533 let \(P Q\) be a focal chord of the parabola \(y^2=4 x\) such that it subtends an angle of \(\frac{\pi}{2}\) at the point \((3,0)\). Let the line segment \(P Q\) be also a focal chord of the ellipse \(E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a^2>b^2\). If \(e\) is the eccentricity of the ellipse \(E\), then the value of \(\frac{1}{e^2}\) is equal to :

1 \(1+\sqrt{2}\)
2 \(3+2 \sqrt{2}\)
3 \(1+2 \sqrt{3}\)
4 \(4+5 \sqrt{3}\)
Ellipse

120530 The locus of the extremities of the latusrectum of the family of ellipses
\(b^2 x^2+y^2=a^2 b^2\) having a given major axis is

1 \(x^2 \pm a y=a^2\)
2 \(y^2 \pm b x=a^2\)
3 \(x^2 \pm b y=a^2\)
4 \(x^2 \pm a x=b^2\)
Ellipse

120531 The locus of the mid point of the line segment joining the point \((4,3)\) and the points on the ellipse \(x^2+2 y^2=4\) is an ellipse with eccentricity:

1 \(\frac{\sqrt{3}}{2}\)
2 \(\frac{1}{2 \sqrt{2}}\)
3 \(\frac{1}{\sqrt{2}}\)
4 \(\frac{1}{2}\)
Ellipse

120532 Let \(P\left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), Q, R\) and \(S\) be four points on the ellipse \(9 x^2+4 y^2=36\), Let \(P Q\) and RS be mutually perpendicular and pass through the origin. If \(\frac{1}{(P Q)^2}+\frac{1}{(R S)^2}=\frac{p}{q}\), where \(p\) and \(q\) are coprime, then \(p+q\) is equal to

1 143
2 137
3 157
4 147
Ellipse

120533 let \(P Q\) be a focal chord of the parabola \(y^2=4 x\) such that it subtends an angle of \(\frac{\pi}{2}\) at the point \((3,0)\). Let the line segment \(P Q\) be also a focal chord of the ellipse \(E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a^2>b^2\). If \(e\) is the eccentricity of the ellipse \(E\), then the value of \(\frac{1}{e^2}\) is equal to :

1 \(1+\sqrt{2}\)
2 \(3+2 \sqrt{2}\)
3 \(1+2 \sqrt{3}\)
4 \(4+5 \sqrt{3}\)
Ellipse

120530 The locus of the extremities of the latusrectum of the family of ellipses
\(b^2 x^2+y^2=a^2 b^2\) having a given major axis is

1 \(x^2 \pm a y=a^2\)
2 \(y^2 \pm b x=a^2\)
3 \(x^2 \pm b y=a^2\)
4 \(x^2 \pm a x=b^2\)
Ellipse

120531 The locus of the mid point of the line segment joining the point \((4,3)\) and the points on the ellipse \(x^2+2 y^2=4\) is an ellipse with eccentricity:

1 \(\frac{\sqrt{3}}{2}\)
2 \(\frac{1}{2 \sqrt{2}}\)
3 \(\frac{1}{\sqrt{2}}\)
4 \(\frac{1}{2}\)
Ellipse

120532 Let \(P\left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), Q, R\) and \(S\) be four points on the ellipse \(9 x^2+4 y^2=36\), Let \(P Q\) and RS be mutually perpendicular and pass through the origin. If \(\frac{1}{(P Q)^2}+\frac{1}{(R S)^2}=\frac{p}{q}\), where \(p\) and \(q\) are coprime, then \(p+q\) is equal to

1 143
2 137
3 157
4 147
Ellipse

120533 let \(P Q\) be a focal chord of the parabola \(y^2=4 x\) such that it subtends an angle of \(\frac{\pi}{2}\) at the point \((3,0)\). Let the line segment \(P Q\) be also a focal chord of the ellipse \(E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a^2>b^2\). If \(e\) is the eccentricity of the ellipse \(E\), then the value of \(\frac{1}{e^2}\) is equal to :

1 \(1+\sqrt{2}\)
2 \(3+2 \sqrt{2}\)
3 \(1+2 \sqrt{3}\)
4 \(4+5 \sqrt{3}\)
Ellipse

120530 The locus of the extremities of the latusrectum of the family of ellipses
\(b^2 x^2+y^2=a^2 b^2\) having a given major axis is

1 \(x^2 \pm a y=a^2\)
2 \(y^2 \pm b x=a^2\)
3 \(x^2 \pm b y=a^2\)
4 \(x^2 \pm a x=b^2\)
Ellipse

120531 The locus of the mid point of the line segment joining the point \((4,3)\) and the points on the ellipse \(x^2+2 y^2=4\) is an ellipse with eccentricity:

1 \(\frac{\sqrt{3}}{2}\)
2 \(\frac{1}{2 \sqrt{2}}\)
3 \(\frac{1}{\sqrt{2}}\)
4 \(\frac{1}{2}\)
Ellipse

120532 Let \(P\left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), Q, R\) and \(S\) be four points on the ellipse \(9 x^2+4 y^2=36\), Let \(P Q\) and RS be mutually perpendicular and pass through the origin. If \(\frac{1}{(P Q)^2}+\frac{1}{(R S)^2}=\frac{p}{q}\), where \(p\) and \(q\) are coprime, then \(p+q\) is equal to

1 143
2 137
3 157
4 147
Ellipse

120533 let \(P Q\) be a focal chord of the parabola \(y^2=4 x\) such that it subtends an angle of \(\frac{\pi}{2}\) at the point \((3,0)\). Let the line segment \(P Q\) be also a focal chord of the ellipse \(E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a^2>b^2\). If \(e\) is the eccentricity of the ellipse \(E\), then the value of \(\frac{1}{e^2}\) is equal to :

1 \(1+\sqrt{2}\)
2 \(3+2 \sqrt{2}\)
3 \(1+2 \sqrt{3}\)
4 \(4+5 \sqrt{3}\)