Standard Equation of Ellipse
Ellipse

120525 The sum of the focal distances of any point on the conic \(\frac{\mathbf{x}^2}{25}+\frac{y^2}{16}=1\) is

1 10
2 9
3 41
4 18
Ellipse

120526 In an ellipse, if the lines joining focus to the extremities of the major axis form an equilateral triangle with the minor axis, then the eccentricity of the ellipse is

1 \(\frac{\sqrt{3}}{2}\)
2 \(\frac{\sqrt{3}}{4}\)
3 \(\frac{1}{\sqrt{2}}\)
4 \(\sqrt{\frac{2}{3}}\)
Ellipse

120527 Let \(S\) and \(S^{\prime}\) be two foci of the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\). If a circle described on SS' as diameter intersects the ellipse in real and distinct points, then the eccentricity \(e\) of the ellipse satisfies

1 \(\frac{1}{\sqrt{2}}\)
2 \(\mathrm{e} \in\left(\frac{1}{\sqrt{2}}, 1\right)\)
3 \(\mathrm{e} \in\left(0, \frac{1}{\sqrt{2}}\right)\)
4 None of these
Ellipse

120528 If the ellipse \(\frac{x^2}{4}+y^2=1\) meets the ellipse \(x^2+\frac{y^2}{a^2}=1\) in four distinct points and \(a=b^2-5 b+7\), then \(b\) does not lie in

1 \([4,5]\)
2 \((-\infty, 2) \cup(3, \infty)\)
3 \((-\infty, 0)\)
4 \([2,3]\)
Ellipse

120529 The distance between the directrices of the ellipse us \(\frac{x^2}{4}+\frac{y^2}{9}=1\) is

1 \(\frac{9}{\sqrt{5}}\)
2 \(\frac{18}{\sqrt{5}}\)
3 \(\frac{24}{\sqrt{5}}\)
4 None of these
Ellipse

120525 The sum of the focal distances of any point on the conic \(\frac{\mathbf{x}^2}{25}+\frac{y^2}{16}=1\) is

1 10
2 9
3 41
4 18
Ellipse

120526 In an ellipse, if the lines joining focus to the extremities of the major axis form an equilateral triangle with the minor axis, then the eccentricity of the ellipse is

1 \(\frac{\sqrt{3}}{2}\)
2 \(\frac{\sqrt{3}}{4}\)
3 \(\frac{1}{\sqrt{2}}\)
4 \(\sqrt{\frac{2}{3}}\)
Ellipse

120527 Let \(S\) and \(S^{\prime}\) be two foci of the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\). If a circle described on SS' as diameter intersects the ellipse in real and distinct points, then the eccentricity \(e\) of the ellipse satisfies

1 \(\frac{1}{\sqrt{2}}\)
2 \(\mathrm{e} \in\left(\frac{1}{\sqrt{2}}, 1\right)\)
3 \(\mathrm{e} \in\left(0, \frac{1}{\sqrt{2}}\right)\)
4 None of these
Ellipse

120528 If the ellipse \(\frac{x^2}{4}+y^2=1\) meets the ellipse \(x^2+\frac{y^2}{a^2}=1\) in four distinct points and \(a=b^2-5 b+7\), then \(b\) does not lie in

1 \([4,5]\)
2 \((-\infty, 2) \cup(3, \infty)\)
3 \((-\infty, 0)\)
4 \([2,3]\)
Ellipse

120529 The distance between the directrices of the ellipse us \(\frac{x^2}{4}+\frac{y^2}{9}=1\) is

1 \(\frac{9}{\sqrt{5}}\)
2 \(\frac{18}{\sqrt{5}}\)
3 \(\frac{24}{\sqrt{5}}\)
4 None of these
Ellipse

120525 The sum of the focal distances of any point on the conic \(\frac{\mathbf{x}^2}{25}+\frac{y^2}{16}=1\) is

1 10
2 9
3 41
4 18
Ellipse

120526 In an ellipse, if the lines joining focus to the extremities of the major axis form an equilateral triangle with the minor axis, then the eccentricity of the ellipse is

1 \(\frac{\sqrt{3}}{2}\)
2 \(\frac{\sqrt{3}}{4}\)
3 \(\frac{1}{\sqrt{2}}\)
4 \(\sqrt{\frac{2}{3}}\)
Ellipse

120527 Let \(S\) and \(S^{\prime}\) be two foci of the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\). If a circle described on SS' as diameter intersects the ellipse in real and distinct points, then the eccentricity \(e\) of the ellipse satisfies

1 \(\frac{1}{\sqrt{2}}\)
2 \(\mathrm{e} \in\left(\frac{1}{\sqrt{2}}, 1\right)\)
3 \(\mathrm{e} \in\left(0, \frac{1}{\sqrt{2}}\right)\)
4 None of these
Ellipse

120528 If the ellipse \(\frac{x^2}{4}+y^2=1\) meets the ellipse \(x^2+\frac{y^2}{a^2}=1\) in four distinct points and \(a=b^2-5 b+7\), then \(b\) does not lie in

1 \([4,5]\)
2 \((-\infty, 2) \cup(3, \infty)\)
3 \((-\infty, 0)\)
4 \([2,3]\)
Ellipse

120529 The distance between the directrices of the ellipse us \(\frac{x^2}{4}+\frac{y^2}{9}=1\) is

1 \(\frac{9}{\sqrt{5}}\)
2 \(\frac{18}{\sqrt{5}}\)
3 \(\frac{24}{\sqrt{5}}\)
4 None of these
Ellipse

120525 The sum of the focal distances of any point on the conic \(\frac{\mathbf{x}^2}{25}+\frac{y^2}{16}=1\) is

1 10
2 9
3 41
4 18
Ellipse

120526 In an ellipse, if the lines joining focus to the extremities of the major axis form an equilateral triangle with the minor axis, then the eccentricity of the ellipse is

1 \(\frac{\sqrt{3}}{2}\)
2 \(\frac{\sqrt{3}}{4}\)
3 \(\frac{1}{\sqrt{2}}\)
4 \(\sqrt{\frac{2}{3}}\)
Ellipse

120527 Let \(S\) and \(S^{\prime}\) be two foci of the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\). If a circle described on SS' as diameter intersects the ellipse in real and distinct points, then the eccentricity \(e\) of the ellipse satisfies

1 \(\frac{1}{\sqrt{2}}\)
2 \(\mathrm{e} \in\left(\frac{1}{\sqrt{2}}, 1\right)\)
3 \(\mathrm{e} \in\left(0, \frac{1}{\sqrt{2}}\right)\)
4 None of these
Ellipse

120528 If the ellipse \(\frac{x^2}{4}+y^2=1\) meets the ellipse \(x^2+\frac{y^2}{a^2}=1\) in four distinct points and \(a=b^2-5 b+7\), then \(b\) does not lie in

1 \([4,5]\)
2 \((-\infty, 2) \cup(3, \infty)\)
3 \((-\infty, 0)\)
4 \([2,3]\)
Ellipse

120529 The distance between the directrices of the ellipse us \(\frac{x^2}{4}+\frac{y^2}{9}=1\) is

1 \(\frac{9}{\sqrt{5}}\)
2 \(\frac{18}{\sqrt{5}}\)
3 \(\frac{24}{\sqrt{5}}\)
4 None of these
Ellipse

120525 The sum of the focal distances of any point on the conic \(\frac{\mathbf{x}^2}{25}+\frac{y^2}{16}=1\) is

1 10
2 9
3 41
4 18
Ellipse

120526 In an ellipse, if the lines joining focus to the extremities of the major axis form an equilateral triangle with the minor axis, then the eccentricity of the ellipse is

1 \(\frac{\sqrt{3}}{2}\)
2 \(\frac{\sqrt{3}}{4}\)
3 \(\frac{1}{\sqrt{2}}\)
4 \(\sqrt{\frac{2}{3}}\)
Ellipse

120527 Let \(S\) and \(S^{\prime}\) be two foci of the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\). If a circle described on SS' as diameter intersects the ellipse in real and distinct points, then the eccentricity \(e\) of the ellipse satisfies

1 \(\frac{1}{\sqrt{2}}\)
2 \(\mathrm{e} \in\left(\frac{1}{\sqrt{2}}, 1\right)\)
3 \(\mathrm{e} \in\left(0, \frac{1}{\sqrt{2}}\right)\)
4 None of these
Ellipse

120528 If the ellipse \(\frac{x^2}{4}+y^2=1\) meets the ellipse \(x^2+\frac{y^2}{a^2}=1\) in four distinct points and \(a=b^2-5 b+7\), then \(b\) does not lie in

1 \([4,5]\)
2 \((-\infty, 2) \cup(3, \infty)\)
3 \((-\infty, 0)\)
4 \([2,3]\)
Ellipse

120529 The distance between the directrices of the ellipse us \(\frac{x^2}{4}+\frac{y^2}{9}=1\) is

1 \(\frac{9}{\sqrt{5}}\)
2 \(\frac{18}{\sqrt{5}}\)
3 \(\frac{24}{\sqrt{5}}\)
4 None of these