Binomial Expansion
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Binomial Theorem and its Simple Application

119559 The coefficient of the middle term in the expansion of \((x+2 y)^6\) is

1 \({ }^6 \mathrm{C}_3\)
2 \(8\left({ }^6 \mathrm{C}_3\right)\)
3 \(8\left({ }^6 \mathrm{C}_4\right)\)
4 \({ }^6 \mathrm{C}_4\)
Binomial Theorem and its Simple Application

119560 If the sum of the coefficients in the expansion of \((a+b)^n\) is 4096 , then the greatest coefficient in the expansion is

1 924
2 792
3 1594
4 none of these
Binomial Theorem and its Simple Application

119561 The sum of the series \(\sum_{\mathrm{r}=0}^{10}{ }^{20} \mathrm{C}_{\mathrm{r}}\) is

1 \(2^{20}\)
2 \(2^{19}\)
3 \(2^{19}+\frac{1}{2}{ }^{20} \mathrm{C}_{10}\)
4 \(2^{19}-\frac{1}{2}{ }^{20} \mathrm{C}_{10}\)
Binomial Theorem and its Simple Application

119562 The coefficient of \(x^{32}\) in the expansion of \(\left(\mathrm{x}^4-\frac{1}{\mathrm{x}^3}\right)^{15}\) is :

1 \({ }^{-15} \mathrm{C}_3\)
2 \({ }^{15} \mathrm{C}_4\)
3 \({ }^{-15} \mathrm{C}_5\)
4 \({ }^{15} \mathrm{C}_2\)
Binomial Theorem and its Simple Application

119559 The coefficient of the middle term in the expansion of \((x+2 y)^6\) is

1 \({ }^6 \mathrm{C}_3\)
2 \(8\left({ }^6 \mathrm{C}_3\right)\)
3 \(8\left({ }^6 \mathrm{C}_4\right)\)
4 \({ }^6 \mathrm{C}_4\)
Binomial Theorem and its Simple Application

119560 If the sum of the coefficients in the expansion of \((a+b)^n\) is 4096 , then the greatest coefficient in the expansion is

1 924
2 792
3 1594
4 none of these
Binomial Theorem and its Simple Application

119561 The sum of the series \(\sum_{\mathrm{r}=0}^{10}{ }^{20} \mathrm{C}_{\mathrm{r}}\) is

1 \(2^{20}\)
2 \(2^{19}\)
3 \(2^{19}+\frac{1}{2}{ }^{20} \mathrm{C}_{10}\)
4 \(2^{19}-\frac{1}{2}{ }^{20} \mathrm{C}_{10}\)
Binomial Theorem and its Simple Application

119562 The coefficient of \(x^{32}\) in the expansion of \(\left(\mathrm{x}^4-\frac{1}{\mathrm{x}^3}\right)^{15}\) is :

1 \({ }^{-15} \mathrm{C}_3\)
2 \({ }^{15} \mathrm{C}_4\)
3 \({ }^{-15} \mathrm{C}_5\)
4 \({ }^{15} \mathrm{C}_2\)
Binomial Theorem and its Simple Application

119559 The coefficient of the middle term in the expansion of \((x+2 y)^6\) is

1 \({ }^6 \mathrm{C}_3\)
2 \(8\left({ }^6 \mathrm{C}_3\right)\)
3 \(8\left({ }^6 \mathrm{C}_4\right)\)
4 \({ }^6 \mathrm{C}_4\)
Binomial Theorem and its Simple Application

119560 If the sum of the coefficients in the expansion of \((a+b)^n\) is 4096 , then the greatest coefficient in the expansion is

1 924
2 792
3 1594
4 none of these
Binomial Theorem and its Simple Application

119561 The sum of the series \(\sum_{\mathrm{r}=0}^{10}{ }^{20} \mathrm{C}_{\mathrm{r}}\) is

1 \(2^{20}\)
2 \(2^{19}\)
3 \(2^{19}+\frac{1}{2}{ }^{20} \mathrm{C}_{10}\)
4 \(2^{19}-\frac{1}{2}{ }^{20} \mathrm{C}_{10}\)
Binomial Theorem and its Simple Application

119562 The coefficient of \(x^{32}\) in the expansion of \(\left(\mathrm{x}^4-\frac{1}{\mathrm{x}^3}\right)^{15}\) is :

1 \({ }^{-15} \mathrm{C}_3\)
2 \({ }^{15} \mathrm{C}_4\)
3 \({ }^{-15} \mathrm{C}_5\)
4 \({ }^{15} \mathrm{C}_2\)
Binomial Theorem and its Simple Application

119559 The coefficient of the middle term in the expansion of \((x+2 y)^6\) is

1 \({ }^6 \mathrm{C}_3\)
2 \(8\left({ }^6 \mathrm{C}_3\right)\)
3 \(8\left({ }^6 \mathrm{C}_4\right)\)
4 \({ }^6 \mathrm{C}_4\)
Binomial Theorem and its Simple Application

119560 If the sum of the coefficients in the expansion of \((a+b)^n\) is 4096 , then the greatest coefficient in the expansion is

1 924
2 792
3 1594
4 none of these
Binomial Theorem and its Simple Application

119561 The sum of the series \(\sum_{\mathrm{r}=0}^{10}{ }^{20} \mathrm{C}_{\mathrm{r}}\) is

1 \(2^{20}\)
2 \(2^{19}\)
3 \(2^{19}+\frac{1}{2}{ }^{20} \mathrm{C}_{10}\)
4 \(2^{19}-\frac{1}{2}{ }^{20} \mathrm{C}_{10}\)
Binomial Theorem and its Simple Application

119562 The coefficient of \(x^{32}\) in the expansion of \(\left(\mathrm{x}^4-\frac{1}{\mathrm{x}^3}\right)^{15}\) is :

1 \({ }^{-15} \mathrm{C}_3\)
2 \({ }^{15} \mathrm{C}_4\)
3 \({ }^{-15} \mathrm{C}_5\)
4 \({ }^{15} \mathrm{C}_2\)