Binomial Expansion
Binomial Theorem and its Simple Application

119376 For \(x=\frac{5}{7}\), if \(t_k\) is the first negative term in the expansion of \((1+x)^{7 / 5}\), then \(t_1+t_2+\ldots+t_k=\)

1 \(\frac{13}{7}\)
2 \(\frac{107}{14}\)
3 \(\frac{104}{49}\)
4 \(\frac{921}{28}\)
Binomial Theorem and its Simple Application

119377 The greatest integer less than or equal to \((\sqrt{3}+2)^5\) is

1 721
2 722
3 723
4 724
Binomial Theorem and its Simple Application

119378 If \({ }^n \mathbf{C}_0,{ }^n \mathbf{C}_1,{ }^n \mathbf{C}_2, \ldots,{ }^n \mathbf{C}_{\mathrm{n}}\) respectively are the binomial coefficients in the expansion of \((1+x)^n\), then when \(n=10, \sum_{r=1}^{10} C_r \cdot r(r-4)=\)

1 5120
2 7680
3 20480
4 28160
Binomial Theorem and its Simple Application

119379 If \(x\) is so small that all terms containing \(x^2\) and higher powers of \(x\) can be neglected, then the approximate value of \(\frac{\left(1+\frac{2 x}{3}\right)^{-4}(4+5 x)^{1 / 2}}{(9+x)^{3 / 2}}\), when \(x=\frac{6}{371}\), is

1 \(\frac{1}{27}\)
2 \(\frac{29}{378}\)
3 \(\frac{3}{27}\)
4 \(\frac{1}{14}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Binomial Theorem and its Simple Application

119376 For \(x=\frac{5}{7}\), if \(t_k\) is the first negative term in the expansion of \((1+x)^{7 / 5}\), then \(t_1+t_2+\ldots+t_k=\)

1 \(\frac{13}{7}\)
2 \(\frac{107}{14}\)
3 \(\frac{104}{49}\)
4 \(\frac{921}{28}\)
Binomial Theorem and its Simple Application

119377 The greatest integer less than or equal to \((\sqrt{3}+2)^5\) is

1 721
2 722
3 723
4 724
Binomial Theorem and its Simple Application

119378 If \({ }^n \mathbf{C}_0,{ }^n \mathbf{C}_1,{ }^n \mathbf{C}_2, \ldots,{ }^n \mathbf{C}_{\mathrm{n}}\) respectively are the binomial coefficients in the expansion of \((1+x)^n\), then when \(n=10, \sum_{r=1}^{10} C_r \cdot r(r-4)=\)

1 5120
2 7680
3 20480
4 28160
Binomial Theorem and its Simple Application

119379 If \(x\) is so small that all terms containing \(x^2\) and higher powers of \(x\) can be neglected, then the approximate value of \(\frac{\left(1+\frac{2 x}{3}\right)^{-4}(4+5 x)^{1 / 2}}{(9+x)^{3 / 2}}\), when \(x=\frac{6}{371}\), is

1 \(\frac{1}{27}\)
2 \(\frac{29}{378}\)
3 \(\frac{3}{27}\)
4 \(\frac{1}{14}\)
Binomial Theorem and its Simple Application

119376 For \(x=\frac{5}{7}\), if \(t_k\) is the first negative term in the expansion of \((1+x)^{7 / 5}\), then \(t_1+t_2+\ldots+t_k=\)

1 \(\frac{13}{7}\)
2 \(\frac{107}{14}\)
3 \(\frac{104}{49}\)
4 \(\frac{921}{28}\)
Binomial Theorem and its Simple Application

119377 The greatest integer less than or equal to \((\sqrt{3}+2)^5\) is

1 721
2 722
3 723
4 724
Binomial Theorem and its Simple Application

119378 If \({ }^n \mathbf{C}_0,{ }^n \mathbf{C}_1,{ }^n \mathbf{C}_2, \ldots,{ }^n \mathbf{C}_{\mathrm{n}}\) respectively are the binomial coefficients in the expansion of \((1+x)^n\), then when \(n=10, \sum_{r=1}^{10} C_r \cdot r(r-4)=\)

1 5120
2 7680
3 20480
4 28160
Binomial Theorem and its Simple Application

119379 If \(x\) is so small that all terms containing \(x^2\) and higher powers of \(x\) can be neglected, then the approximate value of \(\frac{\left(1+\frac{2 x}{3}\right)^{-4}(4+5 x)^{1 / 2}}{(9+x)^{3 / 2}}\), when \(x=\frac{6}{371}\), is

1 \(\frac{1}{27}\)
2 \(\frac{29}{378}\)
3 \(\frac{3}{27}\)
4 \(\frac{1}{14}\)
Binomial Theorem and its Simple Application

119376 For \(x=\frac{5}{7}\), if \(t_k\) is the first negative term in the expansion of \((1+x)^{7 / 5}\), then \(t_1+t_2+\ldots+t_k=\)

1 \(\frac{13}{7}\)
2 \(\frac{107}{14}\)
3 \(\frac{104}{49}\)
4 \(\frac{921}{28}\)
Binomial Theorem and its Simple Application

119377 The greatest integer less than or equal to \((\sqrt{3}+2)^5\) is

1 721
2 722
3 723
4 724
Binomial Theorem and its Simple Application

119378 If \({ }^n \mathbf{C}_0,{ }^n \mathbf{C}_1,{ }^n \mathbf{C}_2, \ldots,{ }^n \mathbf{C}_{\mathrm{n}}\) respectively are the binomial coefficients in the expansion of \((1+x)^n\), then when \(n=10, \sum_{r=1}^{10} C_r \cdot r(r-4)=\)

1 5120
2 7680
3 20480
4 28160
Binomial Theorem and its Simple Application

119379 If \(x\) is so small that all terms containing \(x^2\) and higher powers of \(x\) can be neglected, then the approximate value of \(\frac{\left(1+\frac{2 x}{3}\right)^{-4}(4+5 x)^{1 / 2}}{(9+x)^{3 / 2}}\), when \(x=\frac{6}{371}\), is

1 \(\frac{1}{27}\)
2 \(\frac{29}{378}\)
3 \(\frac{3}{27}\)
4 \(\frac{1}{14}\)