119378
If \({ }^n \mathbf{C}_0,{ }^n \mathbf{C}_1,{ }^n \mathbf{C}_2, \ldots,{ }^n \mathbf{C}_{\mathrm{n}}\) respectively are the binomial coefficients in the expansion of \((1+x)^n\), then when \(n=10, \sum_{r=1}^{10} C_r \cdot r(r-4)=\)
119379
If \(x\) is so small that all terms containing \(x^2\) and higher powers of \(x\) can be neglected, then the approximate value of \(\frac{\left(1+\frac{2 x}{3}\right)^{-4}(4+5 x)^{1 / 2}}{(9+x)^{3 / 2}}\), when \(x=\frac{6}{371}\), is
119378
If \({ }^n \mathbf{C}_0,{ }^n \mathbf{C}_1,{ }^n \mathbf{C}_2, \ldots,{ }^n \mathbf{C}_{\mathrm{n}}\) respectively are the binomial coefficients in the expansion of \((1+x)^n\), then when \(n=10, \sum_{r=1}^{10} C_r \cdot r(r-4)=\)
119379
If \(x\) is so small that all terms containing \(x^2\) and higher powers of \(x\) can be neglected, then the approximate value of \(\frac{\left(1+\frac{2 x}{3}\right)^{-4}(4+5 x)^{1 / 2}}{(9+x)^{3 / 2}}\), when \(x=\frac{6}{371}\), is
119378
If \({ }^n \mathbf{C}_0,{ }^n \mathbf{C}_1,{ }^n \mathbf{C}_2, \ldots,{ }^n \mathbf{C}_{\mathrm{n}}\) respectively are the binomial coefficients in the expansion of \((1+x)^n\), then when \(n=10, \sum_{r=1}^{10} C_r \cdot r(r-4)=\)
119379
If \(x\) is so small that all terms containing \(x^2\) and higher powers of \(x\) can be neglected, then the approximate value of \(\frac{\left(1+\frac{2 x}{3}\right)^{-4}(4+5 x)^{1 / 2}}{(9+x)^{3 / 2}}\), when \(x=\frac{6}{371}\), is
119378
If \({ }^n \mathbf{C}_0,{ }^n \mathbf{C}_1,{ }^n \mathbf{C}_2, \ldots,{ }^n \mathbf{C}_{\mathrm{n}}\) respectively are the binomial coefficients in the expansion of \((1+x)^n\), then when \(n=10, \sum_{r=1}^{10} C_r \cdot r(r-4)=\)
119379
If \(x\) is so small that all terms containing \(x^2\) and higher powers of \(x\) can be neglected, then the approximate value of \(\frac{\left(1+\frac{2 x}{3}\right)^{-4}(4+5 x)^{1 / 2}}{(9+x)^{3 / 2}}\), when \(x=\frac{6}{371}\), is