Binomial Expansion
Binomial Theorem and its Simple Application

119354 If \(\frac{(1-p x)^{-1}}{(1-q x)}=a_0+a_1 x+a_2 x^2+a_3 x^3+\ldots\). then \(a_n=\)

1 \(\frac{p^{n+1}-q^{n+1}}{q-p}\)
2 \(\frac{p^{n+1}-q^{n+1}}{p-q}\)
3 \(\frac{p^n-q^n}{q-p}\)
4 \(\frac{p^n-q^n}{p-q}\)
Binomial Theorem and its Simple Application

119355 If \(x\) small, so the \(x^2\) and higher powers can be neglected, then the approximate value for
\(\frac{(1-2 x)^{-1}(1-3 x)^{-2}}{(1-4 x)^{-3}}\) is

1 \(1-2 x\)
2 \(1-3 \mathrm{x}\)
3 \(1-4 \mathrm{x}\)
4 \(1-5 \mathrm{x}\)
Binomial Theorem and its Simple Application

119356 If \((a+b x)^{-3}=\frac{1}{27}+\frac{1}{3} x+\ldots \ldots\), then the ordered pair (a, b) equals to

1 \((3,-27)\)
2 \(\left(1, \frac{1}{3}\right)\)
3 \((3,9)\)
4 \((3,-9)\)
Binomial Theorem and its Simple Application

119357 The coefficient of \(x^n\) in the expansion of \(\frac{e^{7 x}+e^x}{e^{3 x}}\) is

1 \(\frac{4^{\mathrm{n}-1}-(-2)^{\mathrm{n}-1}}{\lfloor\mathrm{n}}\)
2 \(\frac{4^{\mathrm{n}-1}-2^{\mathrm{n}-1}}{\lfloor\mathrm{n}}\)
3 \(\frac{4^{\mathrm{n}}-2^{\mathrm{n}}}{\lfloor\mathrm{n}}\)
4 \(\frac{4^{\mathrm{n}}+(-2)^{\mathrm{n}}}{\lfloor\mathrm{n}}\)
Binomial Theorem and its Simple Application

119354 If \(\frac{(1-p x)^{-1}}{(1-q x)}=a_0+a_1 x+a_2 x^2+a_3 x^3+\ldots\). then \(a_n=\)

1 \(\frac{p^{n+1}-q^{n+1}}{q-p}\)
2 \(\frac{p^{n+1}-q^{n+1}}{p-q}\)
3 \(\frac{p^n-q^n}{q-p}\)
4 \(\frac{p^n-q^n}{p-q}\)
Binomial Theorem and its Simple Application

119355 If \(x\) small, so the \(x^2\) and higher powers can be neglected, then the approximate value for
\(\frac{(1-2 x)^{-1}(1-3 x)^{-2}}{(1-4 x)^{-3}}\) is

1 \(1-2 x\)
2 \(1-3 \mathrm{x}\)
3 \(1-4 \mathrm{x}\)
4 \(1-5 \mathrm{x}\)
Binomial Theorem and its Simple Application

119356 If \((a+b x)^{-3}=\frac{1}{27}+\frac{1}{3} x+\ldots \ldots\), then the ordered pair (a, b) equals to

1 \((3,-27)\)
2 \(\left(1, \frac{1}{3}\right)\)
3 \((3,9)\)
4 \((3,-9)\)
Binomial Theorem and its Simple Application

119357 The coefficient of \(x^n\) in the expansion of \(\frac{e^{7 x}+e^x}{e^{3 x}}\) is

1 \(\frac{4^{\mathrm{n}-1}-(-2)^{\mathrm{n}-1}}{\lfloor\mathrm{n}}\)
2 \(\frac{4^{\mathrm{n}-1}-2^{\mathrm{n}-1}}{\lfloor\mathrm{n}}\)
3 \(\frac{4^{\mathrm{n}}-2^{\mathrm{n}}}{\lfloor\mathrm{n}}\)
4 \(\frac{4^{\mathrm{n}}+(-2)^{\mathrm{n}}}{\lfloor\mathrm{n}}\)
Binomial Theorem and its Simple Application

119354 If \(\frac{(1-p x)^{-1}}{(1-q x)}=a_0+a_1 x+a_2 x^2+a_3 x^3+\ldots\). then \(a_n=\)

1 \(\frac{p^{n+1}-q^{n+1}}{q-p}\)
2 \(\frac{p^{n+1}-q^{n+1}}{p-q}\)
3 \(\frac{p^n-q^n}{q-p}\)
4 \(\frac{p^n-q^n}{p-q}\)
Binomial Theorem and its Simple Application

119355 If \(x\) small, so the \(x^2\) and higher powers can be neglected, then the approximate value for
\(\frac{(1-2 x)^{-1}(1-3 x)^{-2}}{(1-4 x)^{-3}}\) is

1 \(1-2 x\)
2 \(1-3 \mathrm{x}\)
3 \(1-4 \mathrm{x}\)
4 \(1-5 \mathrm{x}\)
Binomial Theorem and its Simple Application

119356 If \((a+b x)^{-3}=\frac{1}{27}+\frac{1}{3} x+\ldots \ldots\), then the ordered pair (a, b) equals to

1 \((3,-27)\)
2 \(\left(1, \frac{1}{3}\right)\)
3 \((3,9)\)
4 \((3,-9)\)
Binomial Theorem and its Simple Application

119357 The coefficient of \(x^n\) in the expansion of \(\frac{e^{7 x}+e^x}{e^{3 x}}\) is

1 \(\frac{4^{\mathrm{n}-1}-(-2)^{\mathrm{n}-1}}{\lfloor\mathrm{n}}\)
2 \(\frac{4^{\mathrm{n}-1}-2^{\mathrm{n}-1}}{\lfloor\mathrm{n}}\)
3 \(\frac{4^{\mathrm{n}}-2^{\mathrm{n}}}{\lfloor\mathrm{n}}\)
4 \(\frac{4^{\mathrm{n}}+(-2)^{\mathrm{n}}}{\lfloor\mathrm{n}}\)
Binomial Theorem and its Simple Application

119354 If \(\frac{(1-p x)^{-1}}{(1-q x)}=a_0+a_1 x+a_2 x^2+a_3 x^3+\ldots\). then \(a_n=\)

1 \(\frac{p^{n+1}-q^{n+1}}{q-p}\)
2 \(\frac{p^{n+1}-q^{n+1}}{p-q}\)
3 \(\frac{p^n-q^n}{q-p}\)
4 \(\frac{p^n-q^n}{p-q}\)
Binomial Theorem and its Simple Application

119355 If \(x\) small, so the \(x^2\) and higher powers can be neglected, then the approximate value for
\(\frac{(1-2 x)^{-1}(1-3 x)^{-2}}{(1-4 x)^{-3}}\) is

1 \(1-2 x\)
2 \(1-3 \mathrm{x}\)
3 \(1-4 \mathrm{x}\)
4 \(1-5 \mathrm{x}\)
Binomial Theorem and its Simple Application

119356 If \((a+b x)^{-3}=\frac{1}{27}+\frac{1}{3} x+\ldots \ldots\), then the ordered pair (a, b) equals to

1 \((3,-27)\)
2 \(\left(1, \frac{1}{3}\right)\)
3 \((3,9)\)
4 \((3,-9)\)
Binomial Theorem and its Simple Application

119357 The coefficient of \(x^n\) in the expansion of \(\frac{e^{7 x}+e^x}{e^{3 x}}\) is

1 \(\frac{4^{\mathrm{n}-1}-(-2)^{\mathrm{n}-1}}{\lfloor\mathrm{n}}\)
2 \(\frac{4^{\mathrm{n}-1}-2^{\mathrm{n}-1}}{\lfloor\mathrm{n}}\)
3 \(\frac{4^{\mathrm{n}}-2^{\mathrm{n}}}{\lfloor\mathrm{n}}\)
4 \(\frac{4^{\mathrm{n}}+(-2)^{\mathrm{n}}}{\lfloor\mathrm{n}}\)