Binomial Expansion
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Binomial Theorem and its Simple Application

119358 The number (101) \({ }^{100}-1\) is divisible by

1 \(10^4\)
2 \(10^6\)
3 \(10^8\)
4 \(10^{12}\)
Binomial Theorem and its Simple Application

119360 If \(\left(1-x+x^2\right)^n=a_0+a_1 x+\ldots a_{2 n} x^{2 n}\), then \(a_0+a_2+a_4+\ldots+a_{2 n}=\)

1 \(\frac{3^{\mathrm{n}}-1}{2}\)
2 \(\frac{3^{\mathrm{n}}+1}{2}\)
3 \(\frac{2.3^{\mathrm{n}}-1}{2}\)
4 \(\frac{2.3^{\mathrm{n}}+1}{2}\)
Binomial Theorem and its Simple Application

119361 The number of irrational terms in the expansion of \(\left(3^{\frac{1}{8}}+5^{\frac{1}{4}}\right)^{84}\) is

1 73
2 74
3 75
4 76
Binomial Theorem and its Simple Application

119362 If \(\left(1+2 x+3 x^2\right)^{10}=a_0+a_1 x+a_2 x^2+\ldots .+a_{20} x^{20}\), then \(a_1\) equals

1 10
2 20
3 210
4 None of these
Binomial Theorem and its Simple Application

119358 The number (101) \({ }^{100}-1\) is divisible by

1 \(10^4\)
2 \(10^6\)
3 \(10^8\)
4 \(10^{12}\)
Binomial Theorem and its Simple Application

119360 If \(\left(1-x+x^2\right)^n=a_0+a_1 x+\ldots a_{2 n} x^{2 n}\), then \(a_0+a_2+a_4+\ldots+a_{2 n}=\)

1 \(\frac{3^{\mathrm{n}}-1}{2}\)
2 \(\frac{3^{\mathrm{n}}+1}{2}\)
3 \(\frac{2.3^{\mathrm{n}}-1}{2}\)
4 \(\frac{2.3^{\mathrm{n}}+1}{2}\)
Binomial Theorem and its Simple Application

119361 The number of irrational terms in the expansion of \(\left(3^{\frac{1}{8}}+5^{\frac{1}{4}}\right)^{84}\) is

1 73
2 74
3 75
4 76
Binomial Theorem and its Simple Application

119362 If \(\left(1+2 x+3 x^2\right)^{10}=a_0+a_1 x+a_2 x^2+\ldots .+a_{20} x^{20}\), then \(a_1\) equals

1 10
2 20
3 210
4 None of these
Binomial Theorem and its Simple Application

119358 The number (101) \({ }^{100}-1\) is divisible by

1 \(10^4\)
2 \(10^6\)
3 \(10^8\)
4 \(10^{12}\)
Binomial Theorem and its Simple Application

119360 If \(\left(1-x+x^2\right)^n=a_0+a_1 x+\ldots a_{2 n} x^{2 n}\), then \(a_0+a_2+a_4+\ldots+a_{2 n}=\)

1 \(\frac{3^{\mathrm{n}}-1}{2}\)
2 \(\frac{3^{\mathrm{n}}+1}{2}\)
3 \(\frac{2.3^{\mathrm{n}}-1}{2}\)
4 \(\frac{2.3^{\mathrm{n}}+1}{2}\)
Binomial Theorem and its Simple Application

119361 The number of irrational terms in the expansion of \(\left(3^{\frac{1}{8}}+5^{\frac{1}{4}}\right)^{84}\) is

1 73
2 74
3 75
4 76
Binomial Theorem and its Simple Application

119362 If \(\left(1+2 x+3 x^2\right)^{10}=a_0+a_1 x+a_2 x^2+\ldots .+a_{20} x^{20}\), then \(a_1\) equals

1 10
2 20
3 210
4 None of these
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Binomial Theorem and its Simple Application

119358 The number (101) \({ }^{100}-1\) is divisible by

1 \(10^4\)
2 \(10^6\)
3 \(10^8\)
4 \(10^{12}\)
Binomial Theorem and its Simple Application

119360 If \(\left(1-x+x^2\right)^n=a_0+a_1 x+\ldots a_{2 n} x^{2 n}\), then \(a_0+a_2+a_4+\ldots+a_{2 n}=\)

1 \(\frac{3^{\mathrm{n}}-1}{2}\)
2 \(\frac{3^{\mathrm{n}}+1}{2}\)
3 \(\frac{2.3^{\mathrm{n}}-1}{2}\)
4 \(\frac{2.3^{\mathrm{n}}+1}{2}\)
Binomial Theorem and its Simple Application

119361 The number of irrational terms in the expansion of \(\left(3^{\frac{1}{8}}+5^{\frac{1}{4}}\right)^{84}\) is

1 73
2 74
3 75
4 76
Binomial Theorem and its Simple Application

119362 If \(\left(1+2 x+3 x^2\right)^{10}=a_0+a_1 x+a_2 x^2+\ldots .+a_{20} x^{20}\), then \(a_1\) equals

1 10
2 20
3 210
4 None of these