Binomial Expansion
Binomial Theorem and its Simple Application

119336 The term independent of \(x\) in the expansion of \(\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)^{2 \mathrm{n}}\) is

1 \(\frac{1.3 .5 \ldots(2 \mathrm{n}-1)}{\mathrm{n} !}\)
2 \(\frac{1.3 .5 \ldots(2 \mathrm{n}-1)}{\mathrm{n} !} 2^{\mathrm{n}}\)
3 \(\frac{1.3 .5 \ldots(2 \mathrm{n}+1)}{(\mathrm{n}+1) !}\)
4 None of the above
Binomial Theorem and its Simple Application

119337 Let \(T_n\) denote the number of triangles which can be formed using the vertices of a regular polygon of \(n\) sides. If \(T_{n+1}-T_n=21\), then \(n\) equals:

1 5
2 7
3 6
4 4
Binomial Theorem and its Simple Application

119338 Let \((1+x)^{36}=a_0+a_1 x+a_2 x^2+\ldots+a_{36} x^{36}\), Then, \(a_0+a_3+a_6+\ldots+a_{36}\) is equal to

1 \(\frac{2}{3}\left(2^{35}+1\right)\)
2 \(2^{35}\)
3 \(2\left(2^{35}+1\right)\)
4 None of these
Binomial Theorem and its Simple Application

119340 The coefficient of \(x^{20}\) in the expansion of \(\left(1+x^2\right)^{40} \cdot\left(x^2+2+\frac{1}{x^2}\right)^{-5}\) is

1 \({ }^{20} \mathrm{C}_{10}\)
2 \({ }^{30} \mathrm{C}_{25}\)
3 1
4 0
Binomial Theorem and its Simple Application

119336 The term independent of \(x\) in the expansion of \(\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)^{2 \mathrm{n}}\) is

1 \(\frac{1.3 .5 \ldots(2 \mathrm{n}-1)}{\mathrm{n} !}\)
2 \(\frac{1.3 .5 \ldots(2 \mathrm{n}-1)}{\mathrm{n} !} 2^{\mathrm{n}}\)
3 \(\frac{1.3 .5 \ldots(2 \mathrm{n}+1)}{(\mathrm{n}+1) !}\)
4 None of the above
Binomial Theorem and its Simple Application

119337 Let \(T_n\) denote the number of triangles which can be formed using the vertices of a regular polygon of \(n\) sides. If \(T_{n+1}-T_n=21\), then \(n\) equals:

1 5
2 7
3 6
4 4
Binomial Theorem and its Simple Application

119338 Let \((1+x)^{36}=a_0+a_1 x+a_2 x^2+\ldots+a_{36} x^{36}\), Then, \(a_0+a_3+a_6+\ldots+a_{36}\) is equal to

1 \(\frac{2}{3}\left(2^{35}+1\right)\)
2 \(2^{35}\)
3 \(2\left(2^{35}+1\right)\)
4 None of these
Binomial Theorem and its Simple Application

119340 The coefficient of \(x^{20}\) in the expansion of \(\left(1+x^2\right)^{40} \cdot\left(x^2+2+\frac{1}{x^2}\right)^{-5}\) is

1 \({ }^{20} \mathrm{C}_{10}\)
2 \({ }^{30} \mathrm{C}_{25}\)
3 1
4 0
Binomial Theorem and its Simple Application

119336 The term independent of \(x\) in the expansion of \(\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)^{2 \mathrm{n}}\) is

1 \(\frac{1.3 .5 \ldots(2 \mathrm{n}-1)}{\mathrm{n} !}\)
2 \(\frac{1.3 .5 \ldots(2 \mathrm{n}-1)}{\mathrm{n} !} 2^{\mathrm{n}}\)
3 \(\frac{1.3 .5 \ldots(2 \mathrm{n}+1)}{(\mathrm{n}+1) !}\)
4 None of the above
Binomial Theorem and its Simple Application

119337 Let \(T_n\) denote the number of triangles which can be formed using the vertices of a regular polygon of \(n\) sides. If \(T_{n+1}-T_n=21\), then \(n\) equals:

1 5
2 7
3 6
4 4
Binomial Theorem and its Simple Application

119338 Let \((1+x)^{36}=a_0+a_1 x+a_2 x^2+\ldots+a_{36} x^{36}\), Then, \(a_0+a_3+a_6+\ldots+a_{36}\) is equal to

1 \(\frac{2}{3}\left(2^{35}+1\right)\)
2 \(2^{35}\)
3 \(2\left(2^{35}+1\right)\)
4 None of these
Binomial Theorem and its Simple Application

119340 The coefficient of \(x^{20}\) in the expansion of \(\left(1+x^2\right)^{40} \cdot\left(x^2+2+\frac{1}{x^2}\right)^{-5}\) is

1 \({ }^{20} \mathrm{C}_{10}\)
2 \({ }^{30} \mathrm{C}_{25}\)
3 1
4 0
Binomial Theorem and its Simple Application

119336 The term independent of \(x\) in the expansion of \(\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)^{2 \mathrm{n}}\) is

1 \(\frac{1.3 .5 \ldots(2 \mathrm{n}-1)}{\mathrm{n} !}\)
2 \(\frac{1.3 .5 \ldots(2 \mathrm{n}-1)}{\mathrm{n} !} 2^{\mathrm{n}}\)
3 \(\frac{1.3 .5 \ldots(2 \mathrm{n}+1)}{(\mathrm{n}+1) !}\)
4 None of the above
Binomial Theorem and its Simple Application

119337 Let \(T_n\) denote the number of triangles which can be formed using the vertices of a regular polygon of \(n\) sides. If \(T_{n+1}-T_n=21\), then \(n\) equals:

1 5
2 7
3 6
4 4
Binomial Theorem and its Simple Application

119338 Let \((1+x)^{36}=a_0+a_1 x+a_2 x^2+\ldots+a_{36} x^{36}\), Then, \(a_0+a_3+a_6+\ldots+a_{36}\) is equal to

1 \(\frac{2}{3}\left(2^{35}+1\right)\)
2 \(2^{35}\)
3 \(2\left(2^{35}+1\right)\)
4 None of these
Binomial Theorem and its Simple Application

119340 The coefficient of \(x^{20}\) in the expansion of \(\left(1+x^2\right)^{40} \cdot\left(x^2+2+\frac{1}{x^2}\right)^{-5}\) is

1 \({ }^{20} \mathrm{C}_{10}\)
2 \({ }^{30} \mathrm{C}_{25}\)
3 1
4 0