Binomial Expansion
Binomial Theorem and its Simple Application

119331 If \(x\) is numerically so small so that \(x^2\) and higher powers of \(x\) can be neglected, then
\(\left(1+\frac{2 x}{3}\right)^{3 / 2} \cdot(32+5 x)^{-1 / 5}\)
is approximately equal to

1 \(\frac{32+31 x}{64}\)
2 \(\frac{31+32 x}{64}\)
3 \(\frac{31-32 \mathrm{x}}{64}\)
4 \(\frac{1-2 \mathrm{x}}{64}\)
Binomial Theorem and its Simple Application

119332 In the expansion of \(\frac{a+b x}{e^x}\) the coefficient of \(x^r\) is

1 \(\frac{\mathrm{a}-\mathrm{b}}{\mathrm{r} !}\)
2 \(\frac{a-b r}{r !}\)
3 \((-1)^{\mathrm{r}} \frac{\mathrm{a}-\mathrm{br}}{\mathrm{r} !}\)
4 None of these
Binomial Theorem and its Simple Application

119333 The greatest coefficient in the expansion of (1+ \(\mathrm{x})^{2 \mathrm{n}}\) is:

1 \({ }^{2 n} C_n\)
2 \({ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}+1}\)
3 \({ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}-1}\)
4 \({ }^{2 n} \mathrm{C}_{2 \mathrm{n}-1}\)
Binomial Theorem and its Simple Application

119334 The coefficient of \(x^5\) in the expansion of \((1+\) \(\left.\mathbf{x}^2\right)^5(1+x)^4\) is

1 40
2 50
3 60
4 -50
Binomial Theorem and its Simple Application

119335 In the expansion of \(\left(\frac{3 x^2}{5}+\frac{5}{3 x^2}\right)^{10}\) mid term is

1 291
2 242
3 252
4 284
Binomial Theorem and its Simple Application

119331 If \(x\) is numerically so small so that \(x^2\) and higher powers of \(x\) can be neglected, then
\(\left(1+\frac{2 x}{3}\right)^{3 / 2} \cdot(32+5 x)^{-1 / 5}\)
is approximately equal to

1 \(\frac{32+31 x}{64}\)
2 \(\frac{31+32 x}{64}\)
3 \(\frac{31-32 \mathrm{x}}{64}\)
4 \(\frac{1-2 \mathrm{x}}{64}\)
Binomial Theorem and its Simple Application

119332 In the expansion of \(\frac{a+b x}{e^x}\) the coefficient of \(x^r\) is

1 \(\frac{\mathrm{a}-\mathrm{b}}{\mathrm{r} !}\)
2 \(\frac{a-b r}{r !}\)
3 \((-1)^{\mathrm{r}} \frac{\mathrm{a}-\mathrm{br}}{\mathrm{r} !}\)
4 None of these
Binomial Theorem and its Simple Application

119333 The greatest coefficient in the expansion of (1+ \(\mathrm{x})^{2 \mathrm{n}}\) is:

1 \({ }^{2 n} C_n\)
2 \({ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}+1}\)
3 \({ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}-1}\)
4 \({ }^{2 n} \mathrm{C}_{2 \mathrm{n}-1}\)
Binomial Theorem and its Simple Application

119334 The coefficient of \(x^5\) in the expansion of \((1+\) \(\left.\mathbf{x}^2\right)^5(1+x)^4\) is

1 40
2 50
3 60
4 -50
Binomial Theorem and its Simple Application

119335 In the expansion of \(\left(\frac{3 x^2}{5}+\frac{5}{3 x^2}\right)^{10}\) mid term is

1 291
2 242
3 252
4 284
Binomial Theorem and its Simple Application

119331 If \(x\) is numerically so small so that \(x^2\) and higher powers of \(x\) can be neglected, then
\(\left(1+\frac{2 x}{3}\right)^{3 / 2} \cdot(32+5 x)^{-1 / 5}\)
is approximately equal to

1 \(\frac{32+31 x}{64}\)
2 \(\frac{31+32 x}{64}\)
3 \(\frac{31-32 \mathrm{x}}{64}\)
4 \(\frac{1-2 \mathrm{x}}{64}\)
Binomial Theorem and its Simple Application

119332 In the expansion of \(\frac{a+b x}{e^x}\) the coefficient of \(x^r\) is

1 \(\frac{\mathrm{a}-\mathrm{b}}{\mathrm{r} !}\)
2 \(\frac{a-b r}{r !}\)
3 \((-1)^{\mathrm{r}} \frac{\mathrm{a}-\mathrm{br}}{\mathrm{r} !}\)
4 None of these
Binomial Theorem and its Simple Application

119333 The greatest coefficient in the expansion of (1+ \(\mathrm{x})^{2 \mathrm{n}}\) is:

1 \({ }^{2 n} C_n\)
2 \({ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}+1}\)
3 \({ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}-1}\)
4 \({ }^{2 n} \mathrm{C}_{2 \mathrm{n}-1}\)
Binomial Theorem and its Simple Application

119334 The coefficient of \(x^5\) in the expansion of \((1+\) \(\left.\mathbf{x}^2\right)^5(1+x)^4\) is

1 40
2 50
3 60
4 -50
Binomial Theorem and its Simple Application

119335 In the expansion of \(\left(\frac{3 x^2}{5}+\frac{5}{3 x^2}\right)^{10}\) mid term is

1 291
2 242
3 252
4 284
Binomial Theorem and its Simple Application

119331 If \(x\) is numerically so small so that \(x^2\) and higher powers of \(x\) can be neglected, then
\(\left(1+\frac{2 x}{3}\right)^{3 / 2} \cdot(32+5 x)^{-1 / 5}\)
is approximately equal to

1 \(\frac{32+31 x}{64}\)
2 \(\frac{31+32 x}{64}\)
3 \(\frac{31-32 \mathrm{x}}{64}\)
4 \(\frac{1-2 \mathrm{x}}{64}\)
Binomial Theorem and its Simple Application

119332 In the expansion of \(\frac{a+b x}{e^x}\) the coefficient of \(x^r\) is

1 \(\frac{\mathrm{a}-\mathrm{b}}{\mathrm{r} !}\)
2 \(\frac{a-b r}{r !}\)
3 \((-1)^{\mathrm{r}} \frac{\mathrm{a}-\mathrm{br}}{\mathrm{r} !}\)
4 None of these
Binomial Theorem and its Simple Application

119333 The greatest coefficient in the expansion of (1+ \(\mathrm{x})^{2 \mathrm{n}}\) is:

1 \({ }^{2 n} C_n\)
2 \({ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}+1}\)
3 \({ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}-1}\)
4 \({ }^{2 n} \mathrm{C}_{2 \mathrm{n}-1}\)
Binomial Theorem and its Simple Application

119334 The coefficient of \(x^5\) in the expansion of \((1+\) \(\left.\mathbf{x}^2\right)^5(1+x)^4\) is

1 40
2 50
3 60
4 -50
Binomial Theorem and its Simple Application

119335 In the expansion of \(\left(\frac{3 x^2}{5}+\frac{5}{3 x^2}\right)^{10}\) mid term is

1 291
2 242
3 252
4 284
Binomial Theorem and its Simple Application

119331 If \(x\) is numerically so small so that \(x^2\) and higher powers of \(x\) can be neglected, then
\(\left(1+\frac{2 x}{3}\right)^{3 / 2} \cdot(32+5 x)^{-1 / 5}\)
is approximately equal to

1 \(\frac{32+31 x}{64}\)
2 \(\frac{31+32 x}{64}\)
3 \(\frac{31-32 \mathrm{x}}{64}\)
4 \(\frac{1-2 \mathrm{x}}{64}\)
Binomial Theorem and its Simple Application

119332 In the expansion of \(\frac{a+b x}{e^x}\) the coefficient of \(x^r\) is

1 \(\frac{\mathrm{a}-\mathrm{b}}{\mathrm{r} !}\)
2 \(\frac{a-b r}{r !}\)
3 \((-1)^{\mathrm{r}} \frac{\mathrm{a}-\mathrm{br}}{\mathrm{r} !}\)
4 None of these
Binomial Theorem and its Simple Application

119333 The greatest coefficient in the expansion of (1+ \(\mathrm{x})^{2 \mathrm{n}}\) is:

1 \({ }^{2 n} C_n\)
2 \({ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}+1}\)
3 \({ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}-1}\)
4 \({ }^{2 n} \mathrm{C}_{2 \mathrm{n}-1}\)
Binomial Theorem and its Simple Application

119334 The coefficient of \(x^5\) in the expansion of \((1+\) \(\left.\mathbf{x}^2\right)^5(1+x)^4\) is

1 40
2 50
3 60
4 -50
Binomial Theorem and its Simple Application

119335 In the expansion of \(\left(\frac{3 x^2}{5}+\frac{5}{3 x^2}\right)^{10}\) mid term is

1 291
2 242
3 252
4 284