Binomial Expansion
Binomial Theorem and its Simple Application

119326 If \(\sum_{\mathrm{r}=0}^{\mathrm{n}}\left(\frac{\mathrm{r}+2}{\mathrm{r}+1}\right)^{\mathrm{n}} \mathbf{C}_{\mathrm{r}}=\frac{\mathbf{2}^8-1}{6}\), then \(\mathrm{n}=\)

1 8
2 4
3 6
4 5
Binomial Theorem and its Simple Application

119327 The integer just greater than \((3+\sqrt{5})^{2 \mathrm{n}}\) is divisible by \((n \in N)\)

1 \(2^{\mathrm{n}-1}\)
2 \(2^{\mathrm{n}+1}\)
3 \(2^{\mathrm{n}+2}\)
4 Not divisible by 2
Binomial Theorem and its Simple Application

119328 Find the value of \((7.995)^{1 / 3}\) correct to four decimal places.

1 1.9995
2 1.9996
3 1.9990
4 1.9991
Binomial Theorem and its Simple Application

119329 The numerically greatest term in the expansion of \((3-5 x)^{11}\) when \(x=\frac{1}{5}\), is

1 \(55 \times 3^9\)
2 \(55 \times 3^6\)
3 \(45 \times 3^9\)
4 \(45 \times 3^6\)
Binomial Theorem and its Simple Application

119326 If \(\sum_{\mathrm{r}=0}^{\mathrm{n}}\left(\frac{\mathrm{r}+2}{\mathrm{r}+1}\right)^{\mathrm{n}} \mathbf{C}_{\mathrm{r}}=\frac{\mathbf{2}^8-1}{6}\), then \(\mathrm{n}=\)

1 8
2 4
3 6
4 5
Binomial Theorem and its Simple Application

119327 The integer just greater than \((3+\sqrt{5})^{2 \mathrm{n}}\) is divisible by \((n \in N)\)

1 \(2^{\mathrm{n}-1}\)
2 \(2^{\mathrm{n}+1}\)
3 \(2^{\mathrm{n}+2}\)
4 Not divisible by 2
Binomial Theorem and its Simple Application

119328 Find the value of \((7.995)^{1 / 3}\) correct to four decimal places.

1 1.9995
2 1.9996
3 1.9990
4 1.9991
Binomial Theorem and its Simple Application

119329 The numerically greatest term in the expansion of \((3-5 x)^{11}\) when \(x=\frac{1}{5}\), is

1 \(55 \times 3^9\)
2 \(55 \times 3^6\)
3 \(45 \times 3^9\)
4 \(45 \times 3^6\)
Binomial Theorem and its Simple Application

119326 If \(\sum_{\mathrm{r}=0}^{\mathrm{n}}\left(\frac{\mathrm{r}+2}{\mathrm{r}+1}\right)^{\mathrm{n}} \mathbf{C}_{\mathrm{r}}=\frac{\mathbf{2}^8-1}{6}\), then \(\mathrm{n}=\)

1 8
2 4
3 6
4 5
Binomial Theorem and its Simple Application

119327 The integer just greater than \((3+\sqrt{5})^{2 \mathrm{n}}\) is divisible by \((n \in N)\)

1 \(2^{\mathrm{n}-1}\)
2 \(2^{\mathrm{n}+1}\)
3 \(2^{\mathrm{n}+2}\)
4 Not divisible by 2
Binomial Theorem and its Simple Application

119328 Find the value of \((7.995)^{1 / 3}\) correct to four decimal places.

1 1.9995
2 1.9996
3 1.9990
4 1.9991
Binomial Theorem and its Simple Application

119329 The numerically greatest term in the expansion of \((3-5 x)^{11}\) when \(x=\frac{1}{5}\), is

1 \(55 \times 3^9\)
2 \(55 \times 3^6\)
3 \(45 \times 3^9\)
4 \(45 \times 3^6\)
Binomial Theorem and its Simple Application

119326 If \(\sum_{\mathrm{r}=0}^{\mathrm{n}}\left(\frac{\mathrm{r}+2}{\mathrm{r}+1}\right)^{\mathrm{n}} \mathbf{C}_{\mathrm{r}}=\frac{\mathbf{2}^8-1}{6}\), then \(\mathrm{n}=\)

1 8
2 4
3 6
4 5
Binomial Theorem and its Simple Application

119327 The integer just greater than \((3+\sqrt{5})^{2 \mathrm{n}}\) is divisible by \((n \in N)\)

1 \(2^{\mathrm{n}-1}\)
2 \(2^{\mathrm{n}+1}\)
3 \(2^{\mathrm{n}+2}\)
4 Not divisible by 2
Binomial Theorem and its Simple Application

119328 Find the value of \((7.995)^{1 / 3}\) correct to four decimal places.

1 1.9995
2 1.9996
3 1.9990
4 1.9991
Binomial Theorem and its Simple Application

119329 The numerically greatest term in the expansion of \((3-5 x)^{11}\) when \(x=\frac{1}{5}\), is

1 \(55 \times 3^9\)
2 \(55 \times 3^6\)
3 \(45 \times 3^9\)
4 \(45 \times 3^6\)