119322
If \(\left(\mathbf{1}+\mathbf{x}-2 \mathbf{x}^2\right)^6=\mathbf{1}+\mathbf{C}_1 \mathbf{x}+\mathbf{C}_2 \mathbf{x}^2+\mathbf{C}_3 \mathbf{x}^3+\ldots \ldots\).
\(+\mathrm{C}_{12} \mathrm{x}^{12}\), then the value of \(\mathrm{C}_2+\mathrm{C}_4+\mathrm{C}_6+\ldots .\).
\(+\mathrm{C}_{12}\) is
119323 If \(x, y\) and \(r\) are positive integers, then \({ }^{\mathrm{x}} \mathrm{C}_{\mathrm{r}}+{ }^{\mathrm{x}} \mathrm{C}_{\mathrm{r}-1}{ }^{\mathrm{y}} \mathrm{C}_1+{ }^{\mathrm{x}} \mathrm{C}_{\mathrm{r}-2}{ }^{\mathrm{y}} \mathrm{C}_2+\ldots \ldots .+{ }^{\mathrm{y}} \mathrm{C}_{\mathrm{r}}\) is
119322
If \(\left(\mathbf{1}+\mathbf{x}-2 \mathbf{x}^2\right)^6=\mathbf{1}+\mathbf{C}_1 \mathbf{x}+\mathbf{C}_2 \mathbf{x}^2+\mathbf{C}_3 \mathbf{x}^3+\ldots \ldots\).
\(+\mathrm{C}_{12} \mathrm{x}^{12}\), then the value of \(\mathrm{C}_2+\mathrm{C}_4+\mathrm{C}_6+\ldots .\).
\(+\mathrm{C}_{12}\) is
119323 If \(x, y\) and \(r\) are positive integers, then \({ }^{\mathrm{x}} \mathrm{C}_{\mathrm{r}}+{ }^{\mathrm{x}} \mathrm{C}_{\mathrm{r}-1}{ }^{\mathrm{y}} \mathrm{C}_1+{ }^{\mathrm{x}} \mathrm{C}_{\mathrm{r}-2}{ }^{\mathrm{y}} \mathrm{C}_2+\ldots \ldots .+{ }^{\mathrm{y}} \mathrm{C}_{\mathrm{r}}\) is
119322
If \(\left(\mathbf{1}+\mathbf{x}-2 \mathbf{x}^2\right)^6=\mathbf{1}+\mathbf{C}_1 \mathbf{x}+\mathbf{C}_2 \mathbf{x}^2+\mathbf{C}_3 \mathbf{x}^3+\ldots \ldots\).
\(+\mathrm{C}_{12} \mathrm{x}^{12}\), then the value of \(\mathrm{C}_2+\mathrm{C}_4+\mathrm{C}_6+\ldots .\).
\(+\mathrm{C}_{12}\) is
119323 If \(x, y\) and \(r\) are positive integers, then \({ }^{\mathrm{x}} \mathrm{C}_{\mathrm{r}}+{ }^{\mathrm{x}} \mathrm{C}_{\mathrm{r}-1}{ }^{\mathrm{y}} \mathrm{C}_1+{ }^{\mathrm{x}} \mathrm{C}_{\mathrm{r}-2}{ }^{\mathrm{y}} \mathrm{C}_2+\ldots \ldots .+{ }^{\mathrm{y}} \mathrm{C}_{\mathrm{r}}\) is
119322
If \(\left(\mathbf{1}+\mathbf{x}-2 \mathbf{x}^2\right)^6=\mathbf{1}+\mathbf{C}_1 \mathbf{x}+\mathbf{C}_2 \mathbf{x}^2+\mathbf{C}_3 \mathbf{x}^3+\ldots \ldots\).
\(+\mathrm{C}_{12} \mathrm{x}^{12}\), then the value of \(\mathrm{C}_2+\mathrm{C}_4+\mathrm{C}_6+\ldots .\).
\(+\mathrm{C}_{12}\) is
119323 If \(x, y\) and \(r\) are positive integers, then \({ }^{\mathrm{x}} \mathrm{C}_{\mathrm{r}}+{ }^{\mathrm{x}} \mathrm{C}_{\mathrm{r}-1}{ }^{\mathrm{y}} \mathrm{C}_1+{ }^{\mathrm{x}} \mathrm{C}_{\mathrm{r}-2}{ }^{\mathrm{y}} \mathrm{C}_2+\ldots \ldots .+{ }^{\mathrm{y}} \mathrm{C}_{\mathrm{r}}\) is