Explanation:
B Let, \(\frac{\mathrm{x}+1}{-10}=\frac{\mathrm{y}+3}{-1}=\frac{\mathrm{z}-4}{1}=\lambda\)
i.e., \(\mathrm{x}=-1-10 \lambda, \mathrm{y}=-3-\lambda, \mathrm{z}=4+\lambda\)
And, \(\frac{\mathrm{x}+10}{-1}=\frac{\mathrm{y}+1}{-3}=\frac{\mathrm{z}-1}{4}=\mu\)
i.e., \(\mathrm{x}=-10-\mu, \mathrm{y}=-1-3 \mu, \mathrm{z}=1+4 \mu\)
The lines are intersecting, therefore they have common point.
Hence for same value of \(\lambda\) and \(\mu\),
\(\therefore-1-10 \lambda=-10-\mu \Rightarrow 10 \lambda-\mu=9 \ldots\) (i)
\(-3-\lambda=-1-3 \mu \Rightarrow \lambda-3 \mu=-2 \quad \ldots\) (ii)
\(4+\lambda=1+4 \mu \Rightarrow \lambda-4 \mu=-3 \quad \ldots\) (iii)
Solving equation (ii) and (iii) we get \(\mu=1\) and \(\lambda=1\)
These value of \(\lambda\) and \(\mu\) satisfy eq. (i), we get-
\(\therefore\) The point of intersection is \((-11,-4,5)\)