121406
The equation of the plane containing the line \(\frac{\mathbf{x}-\mathbf{x}_1}{\ell}=\frac{\mathbf{y}-\mathbf{y}_1}{\mathbf{m}}=\frac{\mathbf{z}-\mathbf{z}_1}{\mathbf{n}}\) is
\(\mathbf{a}\left(\mathbf{x}-\mathrm{x}_1\right)+\mathbf{b}\left(\mathbf{y}-\mathrm{y}_1\right)+\mathbf{c}\left(\mathbf{z}-\mathrm{z}_1\right)=\mathbf{0} .\)
Correct
option is
121406
The equation of the plane containing the line \(\frac{\mathbf{x}-\mathbf{x}_1}{\ell}=\frac{\mathbf{y}-\mathbf{y}_1}{\mathbf{m}}=\frac{\mathbf{z}-\mathbf{z}_1}{\mathbf{n}}\) is
\(\mathbf{a}\left(\mathbf{x}-\mathrm{x}_1\right)+\mathbf{b}\left(\mathbf{y}-\mathrm{y}_1\right)+\mathbf{c}\left(\mathbf{z}-\mathrm{z}_1\right)=\mathbf{0} .\)
Correct
option is
121406
The equation of the plane containing the line \(\frac{\mathbf{x}-\mathbf{x}_1}{\ell}=\frac{\mathbf{y}-\mathbf{y}_1}{\mathbf{m}}=\frac{\mathbf{z}-\mathbf{z}_1}{\mathbf{n}}\) is
\(\mathbf{a}\left(\mathbf{x}-\mathrm{x}_1\right)+\mathbf{b}\left(\mathbf{y}-\mathrm{y}_1\right)+\mathbf{c}\left(\mathbf{z}-\mathrm{z}_1\right)=\mathbf{0} .\)
Correct
option is
121406
The equation of the plane containing the line \(\frac{\mathbf{x}-\mathbf{x}_1}{\ell}=\frac{\mathbf{y}-\mathbf{y}_1}{\mathbf{m}}=\frac{\mathbf{z}-\mathbf{z}_1}{\mathbf{n}}\) is
\(\mathbf{a}\left(\mathbf{x}-\mathrm{x}_1\right)+\mathbf{b}\left(\mathbf{y}-\mathrm{y}_1\right)+\mathbf{c}\left(\mathbf{z}-\mathrm{z}_1\right)=\mathbf{0} .\)
Correct
option is