Miscellaneous 3-D Problems
Three Dimensional Geometry

121406 The equation of the plane containing the line \(\frac{\mathbf{x}-\mathbf{x}_1}{\ell}=\frac{\mathbf{y}-\mathbf{y}_1}{\mathbf{m}}=\frac{\mathbf{z}-\mathbf{z}_1}{\mathbf{n}}\) is
\(\mathbf{a}\left(\mathbf{x}-\mathrm{x}_1\right)+\mathbf{b}\left(\mathbf{y}-\mathrm{y}_1\right)+\mathbf{c}\left(\mathbf{z}-\mathrm{z}_1\right)=\mathbf{0} .\)
Correct
option is

1 \(\mathrm{ax}_1+\mathrm{by}_1+\mathrm{cz}_1=0\)
2 \(\mathrm{a} \ell+\mathrm{bm}+\mathrm{cn}=0\)
3 \(\frac{\mathrm{a}}{\ell}=\frac{\mathrm{b}}{\mathrm{m}}=\frac{\mathrm{c}}{\mathrm{n}}\)
4 \(\ell \mathrm{x}_1+\mathrm{my}_1+\mathrm{nz}_1=0\)
Three Dimensional Geometry

121407 Given the line \(L: \frac{x-1}{3}=\frac{y+1}{2}=\frac{z-3}{-1}\) and the plane \(\pi: x-2 y-z=0\). Of the following assertions, the only one that is always true is

1 \(\mathrm{L}\) is perpendicular to \(\pi\)
2 L lies in \(\pi\)
3 \(\mathrm{L}\) is not parallel to \(\pi\)
4 None of these
Three Dimensional Geometry

121408 The equation of the right bisector plane of the segment joining \((2,3,4)\) and \((6,7,8)\) is

1 \(x+y+z+15=0\)
2 \(x+y+z-15=0\)
3 \(x-y+z-15=0\)
4 None of these
Three Dimensional Geometry

121409 Determine the plane through the intersection of the planes \(x+2 y+3 z-4=0\) and \(2 x+y-z+5\) \(=0\) and perpendicular to the plane \(5 x+3 y+6 z\) \(+8=0\)

1 \(-51 x-15 y-50 z-173=0\)
2 \(51 \mathrm{x}+15 \mathrm{y}-50 \mathrm{z}+173=0\)
3 \(51 \mathrm{x}-15 \mathrm{y}+50 \mathrm{z}-173=0\)
4 \(51 \mathrm{x}+50 \mathrm{y}+15 \mathrm{z}+173=0\)
Three Dimensional Geometry

121406 The equation of the plane containing the line \(\frac{\mathbf{x}-\mathbf{x}_1}{\ell}=\frac{\mathbf{y}-\mathbf{y}_1}{\mathbf{m}}=\frac{\mathbf{z}-\mathbf{z}_1}{\mathbf{n}}\) is
\(\mathbf{a}\left(\mathbf{x}-\mathrm{x}_1\right)+\mathbf{b}\left(\mathbf{y}-\mathrm{y}_1\right)+\mathbf{c}\left(\mathbf{z}-\mathrm{z}_1\right)=\mathbf{0} .\)
Correct
option is

1 \(\mathrm{ax}_1+\mathrm{by}_1+\mathrm{cz}_1=0\)
2 \(\mathrm{a} \ell+\mathrm{bm}+\mathrm{cn}=0\)
3 \(\frac{\mathrm{a}}{\ell}=\frac{\mathrm{b}}{\mathrm{m}}=\frac{\mathrm{c}}{\mathrm{n}}\)
4 \(\ell \mathrm{x}_1+\mathrm{my}_1+\mathrm{nz}_1=0\)
Three Dimensional Geometry

121407 Given the line \(L: \frac{x-1}{3}=\frac{y+1}{2}=\frac{z-3}{-1}\) and the plane \(\pi: x-2 y-z=0\). Of the following assertions, the only one that is always true is

1 \(\mathrm{L}\) is perpendicular to \(\pi\)
2 L lies in \(\pi\)
3 \(\mathrm{L}\) is not parallel to \(\pi\)
4 None of these
Three Dimensional Geometry

121408 The equation of the right bisector plane of the segment joining \((2,3,4)\) and \((6,7,8)\) is

1 \(x+y+z+15=0\)
2 \(x+y+z-15=0\)
3 \(x-y+z-15=0\)
4 None of these
Three Dimensional Geometry

121409 Determine the plane through the intersection of the planes \(x+2 y+3 z-4=0\) and \(2 x+y-z+5\) \(=0\) and perpendicular to the plane \(5 x+3 y+6 z\) \(+8=0\)

1 \(-51 x-15 y-50 z-173=0\)
2 \(51 \mathrm{x}+15 \mathrm{y}-50 \mathrm{z}+173=0\)
3 \(51 \mathrm{x}-15 \mathrm{y}+50 \mathrm{z}-173=0\)
4 \(51 \mathrm{x}+50 \mathrm{y}+15 \mathrm{z}+173=0\)
Three Dimensional Geometry

121406 The equation of the plane containing the line \(\frac{\mathbf{x}-\mathbf{x}_1}{\ell}=\frac{\mathbf{y}-\mathbf{y}_1}{\mathbf{m}}=\frac{\mathbf{z}-\mathbf{z}_1}{\mathbf{n}}\) is
\(\mathbf{a}\left(\mathbf{x}-\mathrm{x}_1\right)+\mathbf{b}\left(\mathbf{y}-\mathrm{y}_1\right)+\mathbf{c}\left(\mathbf{z}-\mathrm{z}_1\right)=\mathbf{0} .\)
Correct
option is

1 \(\mathrm{ax}_1+\mathrm{by}_1+\mathrm{cz}_1=0\)
2 \(\mathrm{a} \ell+\mathrm{bm}+\mathrm{cn}=0\)
3 \(\frac{\mathrm{a}}{\ell}=\frac{\mathrm{b}}{\mathrm{m}}=\frac{\mathrm{c}}{\mathrm{n}}\)
4 \(\ell \mathrm{x}_1+\mathrm{my}_1+\mathrm{nz}_1=0\)
Three Dimensional Geometry

121407 Given the line \(L: \frac{x-1}{3}=\frac{y+1}{2}=\frac{z-3}{-1}\) and the plane \(\pi: x-2 y-z=0\). Of the following assertions, the only one that is always true is

1 \(\mathrm{L}\) is perpendicular to \(\pi\)
2 L lies in \(\pi\)
3 \(\mathrm{L}\) is not parallel to \(\pi\)
4 None of these
Three Dimensional Geometry

121408 The equation of the right bisector plane of the segment joining \((2,3,4)\) and \((6,7,8)\) is

1 \(x+y+z+15=0\)
2 \(x+y+z-15=0\)
3 \(x-y+z-15=0\)
4 None of these
Three Dimensional Geometry

121409 Determine the plane through the intersection of the planes \(x+2 y+3 z-4=0\) and \(2 x+y-z+5\) \(=0\) and perpendicular to the plane \(5 x+3 y+6 z\) \(+8=0\)

1 \(-51 x-15 y-50 z-173=0\)
2 \(51 \mathrm{x}+15 \mathrm{y}-50 \mathrm{z}+173=0\)
3 \(51 \mathrm{x}-15 \mathrm{y}+50 \mathrm{z}-173=0\)
4 \(51 \mathrm{x}+50 \mathrm{y}+15 \mathrm{z}+173=0\)
Three Dimensional Geometry

121406 The equation of the plane containing the line \(\frac{\mathbf{x}-\mathbf{x}_1}{\ell}=\frac{\mathbf{y}-\mathbf{y}_1}{\mathbf{m}}=\frac{\mathbf{z}-\mathbf{z}_1}{\mathbf{n}}\) is
\(\mathbf{a}\left(\mathbf{x}-\mathrm{x}_1\right)+\mathbf{b}\left(\mathbf{y}-\mathrm{y}_1\right)+\mathbf{c}\left(\mathbf{z}-\mathrm{z}_1\right)=\mathbf{0} .\)
Correct
option is

1 \(\mathrm{ax}_1+\mathrm{by}_1+\mathrm{cz}_1=0\)
2 \(\mathrm{a} \ell+\mathrm{bm}+\mathrm{cn}=0\)
3 \(\frac{\mathrm{a}}{\ell}=\frac{\mathrm{b}}{\mathrm{m}}=\frac{\mathrm{c}}{\mathrm{n}}\)
4 \(\ell \mathrm{x}_1+\mathrm{my}_1+\mathrm{nz}_1=0\)
Three Dimensional Geometry

121407 Given the line \(L: \frac{x-1}{3}=\frac{y+1}{2}=\frac{z-3}{-1}\) and the plane \(\pi: x-2 y-z=0\). Of the following assertions, the only one that is always true is

1 \(\mathrm{L}\) is perpendicular to \(\pi\)
2 L lies in \(\pi\)
3 \(\mathrm{L}\) is not parallel to \(\pi\)
4 None of these
Three Dimensional Geometry

121408 The equation of the right bisector plane of the segment joining \((2,3,4)\) and \((6,7,8)\) is

1 \(x+y+z+15=0\)
2 \(x+y+z-15=0\)
3 \(x-y+z-15=0\)
4 None of these
Three Dimensional Geometry

121409 Determine the plane through the intersection of the planes \(x+2 y+3 z-4=0\) and \(2 x+y-z+5\) \(=0\) and perpendicular to the plane \(5 x+3 y+6 z\) \(+8=0\)

1 \(-51 x-15 y-50 z-173=0\)
2 \(51 \mathrm{x}+15 \mathrm{y}-50 \mathrm{z}+173=0\)
3 \(51 \mathrm{x}-15 \mathrm{y}+50 \mathrm{z}-173=0\)
4 \(51 \mathrm{x}+50 \mathrm{y}+15 \mathrm{z}+173=0\)