121379 Let the image of the point P(1,2,6) in the plane passing through the points A(1,2,0),B(1,4,1) and C(0,5,1) be Q(α2+β2+γ2) is equal to :
A Given,P(1,2,6)& A(1,2,0),B(1,4,1),C(0,5,1)Equation of required plane will bea(x−1)+b(y−2)+c(z−0)=0Putting (1,4,1)⇒2b+c=0putting (0,5,1)⇒−a+3b+c=0On solving (i) \& (ii) we get -a=b and c=−2 bSo,1(x−1)+1(y−2)−2(z−0)=0⇒x+y−2z−3=0Image of P on this plane is -x−11=β−21=γ−6−2=−2(1+2−12−3)6⇒α−11=β−21=γ−6−2=4⇒α=5,β=6,γ=−2 So, α2+β2+γ2=25+36+4⇒α2+β2+γ2=65
121381 The perpendicular distance from origin to the plane x+2y−2z+5=0 equals units.
BDistance from (0,0) to the plane x+2y−2z+5=0 is d=|ax1+by1+cz1+da2+b2+c2| =|1(0)+2(0)−2(0)+512+22+(−2)2| ⇒d=53
121382 If (3,4,−7) is the foot of the perpendicular drawn from the point (−2,3,6) to the plane π then the sum of the intercepts made by the plane π on the x and y-axes is
A Given,A(3,4,−7),B(−2,3,6)⇒AB→=−5i^−j^+13k^Equation of plane λ containing point A having normalvector AB→ isλ:−5(x−3)−1(y−4)+13(z+7)=0⇒−5x−y+13z=−110Or 5x+y−13z=110x22+y110−z110/13=1Sum of intercept on x and y axes is22+110=132
121383 If the point (a,8,−2) divides the line segment joining the points (1,4,6) and (5,2,10) in the ratio m : n then 2 mn−a3=
B Given, pointsA(a,8,−2),P(1,4,6) and Q(5,2,10) where, ' A ' divides PQ is k:1 ratio.Then,Appling section formula -A=(k×5+1×1k+1,k×2+1×4k+1,k×10+1×6k+1)⇒(a,8,−2)=(5k+1k+1,2k+4k+1,10k+6k+1)So,2k+4k+1=8⇒2k+4=8k+8⇒6k=−4k=−2/3And,5k+1k+1=a⇒5(−2/3)+1−2/3+1=a⇒−103+1=a3⇒−73=a3⇒a=−7Hence, value of2 mn−a3=−2×23+73=−43+73=33=1Hence, 2 mn−a3=1