121376 Let \(P\) be the plane containing the straight line \(\frac{x-3}{9}=\frac{y+4}{-1}=\frac{z-7}{3}\) and perpendicular to the plane containing the straight lines \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) and \(\frac{x}{3}=\frac{y}{7}=\frac{z}{8}\). If \(d\) is the distance of \(P\) from the point \((2,-5,11)\), then \(\mathrm{d}^2\) is equal to :
121376 Let \(P\) be the plane containing the straight line \(\frac{x-3}{9}=\frac{y+4}{-1}=\frac{z-7}{3}\) and perpendicular to the plane containing the straight lines \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) and \(\frac{x}{3}=\frac{y}{7}=\frac{z}{8}\). If \(d\) is the distance of \(P\) from the point \((2,-5,11)\), then \(\mathrm{d}^2\) is equal to :
121376 Let \(P\) be the plane containing the straight line \(\frac{x-3}{9}=\frac{y+4}{-1}=\frac{z-7}{3}\) and perpendicular to the plane containing the straight lines \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) and \(\frac{x}{3}=\frac{y}{7}=\frac{z}{8}\). If \(d\) is the distance of \(P\) from the point \((2,-5,11)\), then \(\mathrm{d}^2\) is equal to :
121376 Let \(P\) be the plane containing the straight line \(\frac{x-3}{9}=\frac{y+4}{-1}=\frac{z-7}{3}\) and perpendicular to the plane containing the straight lines \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) and \(\frac{x}{3}=\frac{y}{7}=\frac{z}{8}\). If \(d\) is the distance of \(P\) from the point \((2,-5,11)\), then \(\mathrm{d}^2\) is equal to :