121289
The equation of the plane containing the line \(\frac{\mathrm{x}-\mathrm{x}_1}{l}=\frac{\mathrm{y}-\mathrm{y}_1}{\mathrm{~m}}=\frac{\mathrm{z}-\mathrm{z}_1}{\mathrm{n}}\) is :
\(\mathbf{a}\left(\mathbf{x}-\mathbf{x}_1\right)+\mathbf{b}\left(\mathbf{y}-\mathrm{y}_1\right)+\mathbf{c}\left(\mathrm{z}-\mathrm{z}_1\right)=\mathbf{0}\) where
121289
The equation of the plane containing the line \(\frac{\mathrm{x}-\mathrm{x}_1}{l}=\frac{\mathrm{y}-\mathrm{y}_1}{\mathrm{~m}}=\frac{\mathrm{z}-\mathrm{z}_1}{\mathrm{n}}\) is :
\(\mathbf{a}\left(\mathbf{x}-\mathbf{x}_1\right)+\mathbf{b}\left(\mathbf{y}-\mathrm{y}_1\right)+\mathbf{c}\left(\mathrm{z}-\mathrm{z}_1\right)=\mathbf{0}\) where
121289
The equation of the plane containing the line \(\frac{\mathrm{x}-\mathrm{x}_1}{l}=\frac{\mathrm{y}-\mathrm{y}_1}{\mathrm{~m}}=\frac{\mathrm{z}-\mathrm{z}_1}{\mathrm{n}}\) is :
\(\mathbf{a}\left(\mathbf{x}-\mathbf{x}_1\right)+\mathbf{b}\left(\mathbf{y}-\mathrm{y}_1\right)+\mathbf{c}\left(\mathrm{z}-\mathrm{z}_1\right)=\mathbf{0}\) where
121289
The equation of the plane containing the line \(\frac{\mathrm{x}-\mathrm{x}_1}{l}=\frac{\mathrm{y}-\mathrm{y}_1}{\mathrm{~m}}=\frac{\mathrm{z}-\mathrm{z}_1}{\mathrm{n}}\) is :
\(\mathbf{a}\left(\mathbf{x}-\mathbf{x}_1\right)+\mathbf{b}\left(\mathbf{y}-\mathrm{y}_1\right)+\mathbf{c}\left(\mathrm{z}-\mathrm{z}_1\right)=\mathbf{0}\) where