Equation of a Line, Sphere, and a Plane in Different Forms
Three Dimensional Geometry

121286 If the foot of the perpendicular from \((0,0,0)\) to the plane is \((1,2,2)\), then the equation of the plane is.

1 \(-x+2 y+8 z-9=0\)
2 \(x+2 y+2 z-9=0\)
3 \(x+y+z-5=0\)
4 \(x+2 y-3 z+1=0\)
Three Dimensional Geometry

121287 The equation of the plane which passes through the point \((2,5,-8)\) and perpendicular to each of the planes \(2 x-3 y+4 z+1=0\) and \(4 x+y-\) \(2 \mathrm{z}+6=0\)

1 \(x+10 y+7 z+4=0\)
2 \(x+2 y+2 z+4=0\)
3 \(x+2 y+2 z=0\)
4 \(x+10 y+7 z-4=0\)
Three Dimensional Geometry

121288 The value of \(\lambda\) such that \(x-4=y-2=\frac{1}{2}(z-\lambda)\) lies in the plane \(2 x-4 y+z=7\), is:

1 7
2 -7
3 4
4 None of these
Three Dimensional Geometry

121289 The equation of the plane containing the line \(\frac{\mathrm{x}-\mathrm{x}_1}{l}=\frac{\mathrm{y}-\mathrm{y}_1}{\mathrm{~m}}=\frac{\mathrm{z}-\mathrm{z}_1}{\mathrm{n}}\) is :
\(\mathbf{a}\left(\mathbf{x}-\mathbf{x}_1\right)+\mathbf{b}\left(\mathbf{y}-\mathrm{y}_1\right)+\mathbf{c}\left(\mathrm{z}-\mathrm{z}_1\right)=\mathbf{0}\) where

1 \(\mathrm{ax}_1+\mathrm{by}_1+\mathrm{cz}_1=1\)
2 \(\mathrm{a} / \mathrm{l}=\mathrm{b} / \mathrm{m}=\mathrm{c} / \mathrm{n}\)
3 \(1 \mathrm{x}_1+\mathrm{my}_1+\mathrm{nz}_1=0\)
4 \(\mathrm{al}+\mathrm{bm}+\mathrm{cn}=0\)
Three Dimensional Geometry

121286 If the foot of the perpendicular from \((0,0,0)\) to the plane is \((1,2,2)\), then the equation of the plane is.

1 \(-x+2 y+8 z-9=0\)
2 \(x+2 y+2 z-9=0\)
3 \(x+y+z-5=0\)
4 \(x+2 y-3 z+1=0\)
Three Dimensional Geometry

121287 The equation of the plane which passes through the point \((2,5,-8)\) and perpendicular to each of the planes \(2 x-3 y+4 z+1=0\) and \(4 x+y-\) \(2 \mathrm{z}+6=0\)

1 \(x+10 y+7 z+4=0\)
2 \(x+2 y+2 z+4=0\)
3 \(x+2 y+2 z=0\)
4 \(x+10 y+7 z-4=0\)
Three Dimensional Geometry

121288 The value of \(\lambda\) such that \(x-4=y-2=\frac{1}{2}(z-\lambda)\) lies in the plane \(2 x-4 y+z=7\), is:

1 7
2 -7
3 4
4 None of these
Three Dimensional Geometry

121289 The equation of the plane containing the line \(\frac{\mathrm{x}-\mathrm{x}_1}{l}=\frac{\mathrm{y}-\mathrm{y}_1}{\mathrm{~m}}=\frac{\mathrm{z}-\mathrm{z}_1}{\mathrm{n}}\) is :
\(\mathbf{a}\left(\mathbf{x}-\mathbf{x}_1\right)+\mathbf{b}\left(\mathbf{y}-\mathrm{y}_1\right)+\mathbf{c}\left(\mathrm{z}-\mathrm{z}_1\right)=\mathbf{0}\) where

1 \(\mathrm{ax}_1+\mathrm{by}_1+\mathrm{cz}_1=1\)
2 \(\mathrm{a} / \mathrm{l}=\mathrm{b} / \mathrm{m}=\mathrm{c} / \mathrm{n}\)
3 \(1 \mathrm{x}_1+\mathrm{my}_1+\mathrm{nz}_1=0\)
4 \(\mathrm{al}+\mathrm{bm}+\mathrm{cn}=0\)
Three Dimensional Geometry

121286 If the foot of the perpendicular from \((0,0,0)\) to the plane is \((1,2,2)\), then the equation of the plane is.

1 \(-x+2 y+8 z-9=0\)
2 \(x+2 y+2 z-9=0\)
3 \(x+y+z-5=0\)
4 \(x+2 y-3 z+1=0\)
Three Dimensional Geometry

121287 The equation of the plane which passes through the point \((2,5,-8)\) and perpendicular to each of the planes \(2 x-3 y+4 z+1=0\) and \(4 x+y-\) \(2 \mathrm{z}+6=0\)

1 \(x+10 y+7 z+4=0\)
2 \(x+2 y+2 z+4=0\)
3 \(x+2 y+2 z=0\)
4 \(x+10 y+7 z-4=0\)
Three Dimensional Geometry

121288 The value of \(\lambda\) such that \(x-4=y-2=\frac{1}{2}(z-\lambda)\) lies in the plane \(2 x-4 y+z=7\), is:

1 7
2 -7
3 4
4 None of these
Three Dimensional Geometry

121289 The equation of the plane containing the line \(\frac{\mathrm{x}-\mathrm{x}_1}{l}=\frac{\mathrm{y}-\mathrm{y}_1}{\mathrm{~m}}=\frac{\mathrm{z}-\mathrm{z}_1}{\mathrm{n}}\) is :
\(\mathbf{a}\left(\mathbf{x}-\mathbf{x}_1\right)+\mathbf{b}\left(\mathbf{y}-\mathrm{y}_1\right)+\mathbf{c}\left(\mathrm{z}-\mathrm{z}_1\right)=\mathbf{0}\) where

1 \(\mathrm{ax}_1+\mathrm{by}_1+\mathrm{cz}_1=1\)
2 \(\mathrm{a} / \mathrm{l}=\mathrm{b} / \mathrm{m}=\mathrm{c} / \mathrm{n}\)
3 \(1 \mathrm{x}_1+\mathrm{my}_1+\mathrm{nz}_1=0\)
4 \(\mathrm{al}+\mathrm{bm}+\mathrm{cn}=0\)
Three Dimensional Geometry

121286 If the foot of the perpendicular from \((0,0,0)\) to the plane is \((1,2,2)\), then the equation of the plane is.

1 \(-x+2 y+8 z-9=0\)
2 \(x+2 y+2 z-9=0\)
3 \(x+y+z-5=0\)
4 \(x+2 y-3 z+1=0\)
Three Dimensional Geometry

121287 The equation of the plane which passes through the point \((2,5,-8)\) and perpendicular to each of the planes \(2 x-3 y+4 z+1=0\) and \(4 x+y-\) \(2 \mathrm{z}+6=0\)

1 \(x+10 y+7 z+4=0\)
2 \(x+2 y+2 z+4=0\)
3 \(x+2 y+2 z=0\)
4 \(x+10 y+7 z-4=0\)
Three Dimensional Geometry

121288 The value of \(\lambda\) such that \(x-4=y-2=\frac{1}{2}(z-\lambda)\) lies in the plane \(2 x-4 y+z=7\), is:

1 7
2 -7
3 4
4 None of these
Three Dimensional Geometry

121289 The equation of the plane containing the line \(\frac{\mathrm{x}-\mathrm{x}_1}{l}=\frac{\mathrm{y}-\mathrm{y}_1}{\mathrm{~m}}=\frac{\mathrm{z}-\mathrm{z}_1}{\mathrm{n}}\) is :
\(\mathbf{a}\left(\mathbf{x}-\mathbf{x}_1\right)+\mathbf{b}\left(\mathbf{y}-\mathrm{y}_1\right)+\mathbf{c}\left(\mathrm{z}-\mathrm{z}_1\right)=\mathbf{0}\) where

1 \(\mathrm{ax}_1+\mathrm{by}_1+\mathrm{cz}_1=1\)
2 \(\mathrm{a} / \mathrm{l}=\mathrm{b} / \mathrm{m}=\mathrm{c} / \mathrm{n}\)
3 \(1 \mathrm{x}_1+\mathrm{my}_1+\mathrm{nz}_1=0\)
4 \(\mathrm{al}+\mathrm{bm}+\mathrm{cn}=0\)