Direction Angle, Direction Ratios and Direction Cosine
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Three Dimensional Geometry

121152 If the two lines \(l_1: \frac{x-2}{3}=\frac{y+1}{-2}, z=2\) and \(l_2: \frac{\mathrm{x}-1}{1}=\frac{2 \mathrm{y}+3}{\alpha}=\frac{\mathrm{z}+5}{2}\) perpendicular, then an angle between the lines \(l_2\) and \(l_3: \frac{1-x}{3}=\frac{2 y-3}{-4}=\frac{z}{4}\) is:

1 \(\cos ^{-1}\left(\frac{29}{4}\right)\)
2 \(\sec ^{-1}\left(\frac{29}{4}\right)\)
3 \(\cos ^{-1}\left(\frac{2}{29}\right)\)
4 \(\cos ^{-1}\left(\frac{2}{\sqrt{29}}\right)\)
Three Dimensional Geometry

121154 The acute angle between the lines whose direction cosines are given by the equations \(l+\) \(\mathbf{m}+\mathbf{n}=0\) and \(2 l m+2 l n-m n=0\) is

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{2 \pi}{5}\)
Three Dimensional Geometry

121186 The direction cosines \(l, \mathrm{~m}, \mathrm{n}\) of two lines are satisfying \(3 l+\mathrm{m}+5 \mathrm{n}=0\) and \(6 \mathrm{mn}-2 \mathrm{n} l+5 l \mathrm{~m}=0\). If \(\theta\) is the angle between those lines then \( \vert\cos \theta \vert\) \(=\)

1 \(\frac{1}{\sqrt{6}}\)
2 \(\frac{1}{\sqrt{2}}\)
3 \(\frac{1}{6}\)
4 \(\frac{1}{\sqrt{3}}\)
Three Dimensional Geometry

121120 A line makes angles \(\alpha, \beta, \gamma\) with the coordinate axes, then \(\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma\) is equal to

1 -2
2 -1
3 2
4 1
Three Dimensional Geometry

121152 If the two lines \(l_1: \frac{x-2}{3}=\frac{y+1}{-2}, z=2\) and \(l_2: \frac{\mathrm{x}-1}{1}=\frac{2 \mathrm{y}+3}{\alpha}=\frac{\mathrm{z}+5}{2}\) perpendicular, then an angle between the lines \(l_2\) and \(l_3: \frac{1-x}{3}=\frac{2 y-3}{-4}=\frac{z}{4}\) is:

1 \(\cos ^{-1}\left(\frac{29}{4}\right)\)
2 \(\sec ^{-1}\left(\frac{29}{4}\right)\)
3 \(\cos ^{-1}\left(\frac{2}{29}\right)\)
4 \(\cos ^{-1}\left(\frac{2}{\sqrt{29}}\right)\)
Three Dimensional Geometry

121154 The acute angle between the lines whose direction cosines are given by the equations \(l+\) \(\mathbf{m}+\mathbf{n}=0\) and \(2 l m+2 l n-m n=0\) is

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{2 \pi}{5}\)
Three Dimensional Geometry

121186 The direction cosines \(l, \mathrm{~m}, \mathrm{n}\) of two lines are satisfying \(3 l+\mathrm{m}+5 \mathrm{n}=0\) and \(6 \mathrm{mn}-2 \mathrm{n} l+5 l \mathrm{~m}=0\). If \(\theta\) is the angle between those lines then \( \vert\cos \theta \vert\) \(=\)

1 \(\frac{1}{\sqrt{6}}\)
2 \(\frac{1}{\sqrt{2}}\)
3 \(\frac{1}{6}\)
4 \(\frac{1}{\sqrt{3}}\)
Three Dimensional Geometry

121120 A line makes angles \(\alpha, \beta, \gamma\) with the coordinate axes, then \(\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma\) is equal to

1 -2
2 -1
3 2
4 1
Three Dimensional Geometry

121152 If the two lines \(l_1: \frac{x-2}{3}=\frac{y+1}{-2}, z=2\) and \(l_2: \frac{\mathrm{x}-1}{1}=\frac{2 \mathrm{y}+3}{\alpha}=\frac{\mathrm{z}+5}{2}\) perpendicular, then an angle between the lines \(l_2\) and \(l_3: \frac{1-x}{3}=\frac{2 y-3}{-4}=\frac{z}{4}\) is:

1 \(\cos ^{-1}\left(\frac{29}{4}\right)\)
2 \(\sec ^{-1}\left(\frac{29}{4}\right)\)
3 \(\cos ^{-1}\left(\frac{2}{29}\right)\)
4 \(\cos ^{-1}\left(\frac{2}{\sqrt{29}}\right)\)
Three Dimensional Geometry

121154 The acute angle between the lines whose direction cosines are given by the equations \(l+\) \(\mathbf{m}+\mathbf{n}=0\) and \(2 l m+2 l n-m n=0\) is

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{2 \pi}{5}\)
Three Dimensional Geometry

121186 The direction cosines \(l, \mathrm{~m}, \mathrm{n}\) of two lines are satisfying \(3 l+\mathrm{m}+5 \mathrm{n}=0\) and \(6 \mathrm{mn}-2 \mathrm{n} l+5 l \mathrm{~m}=0\). If \(\theta\) is the angle between those lines then \( \vert\cos \theta \vert\) \(=\)

1 \(\frac{1}{\sqrt{6}}\)
2 \(\frac{1}{\sqrt{2}}\)
3 \(\frac{1}{6}\)
4 \(\frac{1}{\sqrt{3}}\)
Three Dimensional Geometry

121120 A line makes angles \(\alpha, \beta, \gamma\) with the coordinate axes, then \(\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma\) is equal to

1 -2
2 -1
3 2
4 1
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Three Dimensional Geometry

121152 If the two lines \(l_1: \frac{x-2}{3}=\frac{y+1}{-2}, z=2\) and \(l_2: \frac{\mathrm{x}-1}{1}=\frac{2 \mathrm{y}+3}{\alpha}=\frac{\mathrm{z}+5}{2}\) perpendicular, then an angle between the lines \(l_2\) and \(l_3: \frac{1-x}{3}=\frac{2 y-3}{-4}=\frac{z}{4}\) is:

1 \(\cos ^{-1}\left(\frac{29}{4}\right)\)
2 \(\sec ^{-1}\left(\frac{29}{4}\right)\)
3 \(\cos ^{-1}\left(\frac{2}{29}\right)\)
4 \(\cos ^{-1}\left(\frac{2}{\sqrt{29}}\right)\)
Three Dimensional Geometry

121154 The acute angle between the lines whose direction cosines are given by the equations \(l+\) \(\mathbf{m}+\mathbf{n}=0\) and \(2 l m+2 l n-m n=0\) is

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{2 \pi}{5}\)
Three Dimensional Geometry

121186 The direction cosines \(l, \mathrm{~m}, \mathrm{n}\) of two lines are satisfying \(3 l+\mathrm{m}+5 \mathrm{n}=0\) and \(6 \mathrm{mn}-2 \mathrm{n} l+5 l \mathrm{~m}=0\). If \(\theta\) is the angle between those lines then \( \vert\cos \theta \vert\) \(=\)

1 \(\frac{1}{\sqrt{6}}\)
2 \(\frac{1}{\sqrt{2}}\)
3 \(\frac{1}{6}\)
4 \(\frac{1}{\sqrt{3}}\)
Three Dimensional Geometry

121120 A line makes angles \(\alpha, \beta, \gamma\) with the coordinate axes, then \(\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma\) is equal to

1 -2
2 -1
3 2
4 1