Direction Angle, Direction Ratios and Direction Cosine
Three Dimensional Geometry

121138 If \(l, \mathrm{~m}, \mathrm{n}\) are the \(\mathrm{DC}\) 's of a line, then

1 \(l^2+m^2+n^2=0\)
2 \(l^2+m^2+n^2=1\)
3 \(l+\mathrm{m}+\mathrm{n}=1\)
4 \(l=\mathrm{m}=\mathrm{n}=0\)
Three Dimensional Geometry

121167 If a line makes \(\alpha, \beta, \gamma\) with the positive direction of \(x, y\) and \(z\)-axes respectively. Then, \(\cos ^2 \alpha+\cos ^2 \beta+\cos ^2 \gamma\) is equal to

1 \(\frac{1}{2}\)
2 \(-\frac{1}{2}\)
3 -1
4 1
Three Dimensional Geometry

121138 If \(l, \mathrm{~m}, \mathrm{n}\) are the \(\mathrm{DC}\) 's of a line, then

1 \(l^2+m^2+n^2=0\)
2 \(l^2+m^2+n^2=1\)
3 \(l+\mathrm{m}+\mathrm{n}=1\)
4 \(l=\mathrm{m}=\mathrm{n}=0\)
Three Dimensional Geometry

121167 If a line makes \(\alpha, \beta, \gamma\) with the positive direction of \(x, y\) and \(z\)-axes respectively. Then, \(\cos ^2 \alpha+\cos ^2 \beta+\cos ^2 \gamma\) is equal to

1 \(\frac{1}{2}\)
2 \(-\frac{1}{2}\)
3 -1
4 1
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here