Different Cases of Two Circles
Conic Section

120018 Let \(S_1 \Rightarrow x^2+y^2=9\) and \(S_2 \Rightarrow(x-2)^2+y^2=1\). Then the locus of center of a variable circle \(S_2\) which touches \(S_1\) internally and \(S_2\) externally always passes through the points

1 \((0, \pm \sqrt{3})\)
2 \(\left(\frac{1}{2}, \pm \frac{\sqrt{5}}{2}\right)\)
3 \(\left(2, \pm \frac{3}{2}\right)\)
4 \((1, \pm 2)\)
Conic Section

120019 Choose the correct statement about two circles whose equations are given below.
\(x^2+y^2-10 x-10 y+41=0\)
\(x^2+y^2-22 x-10 y+137=0\)

1 circle have same centre
2 circles have no meeting point
3 circles have only one meeting point
4 circles have two meeting points
Conic Section

120020 If the circle (x+a)^2+(y+b)^2=a^2 \text { and }(x+c)^2+\)
\((y+d)^2=d^2 \text { cuts orthogonally, then } b(b-2 d)=\)

1 \(c(c-2 a)\)
2 \(c(2 a-c)\)
3 \(\mathrm{d}(2 \mathrm{c}-\mathrm{a})\)
4 \(a(a-2 c)\)
Conic Section

120021 Equation of circle passes through the points of
\(\text { intersection of circles } x^2+y^2=6 \text { and } x^2+y^2-\)
\(6 x+8=0 \text { and point }(1,1) \text { is }\)

1 \(x^2+y^2-6 x+4=0\)
2 \(x^2+y^2-3 x+1=0\)
3 \(x^2+y^2-4 y+2=0\)
4 \(x^2+y^2-6 x-6 y+10=0\)
Conic Section

120018 Let \(S_1 \Rightarrow x^2+y^2=9\) and \(S_2 \Rightarrow(x-2)^2+y^2=1\). Then the locus of center of a variable circle \(S_2\) which touches \(S_1\) internally and \(S_2\) externally always passes through the points

1 \((0, \pm \sqrt{3})\)
2 \(\left(\frac{1}{2}, \pm \frac{\sqrt{5}}{2}\right)\)
3 \(\left(2, \pm \frac{3}{2}\right)\)
4 \((1, \pm 2)\)
Conic Section

120019 Choose the correct statement about two circles whose equations are given below.
\(x^2+y^2-10 x-10 y+41=0\)
\(x^2+y^2-22 x-10 y+137=0\)

1 circle have same centre
2 circles have no meeting point
3 circles have only one meeting point
4 circles have two meeting points
Conic Section

120020 If the circle (x+a)^2+(y+b)^2=a^2 \text { and }(x+c)^2+\)
\((y+d)^2=d^2 \text { cuts orthogonally, then } b(b-2 d)=\)

1 \(c(c-2 a)\)
2 \(c(2 a-c)\)
3 \(\mathrm{d}(2 \mathrm{c}-\mathrm{a})\)
4 \(a(a-2 c)\)
Conic Section

120021 Equation of circle passes through the points of
\(\text { intersection of circles } x^2+y^2=6 \text { and } x^2+y^2-\)
\(6 x+8=0 \text { and point }(1,1) \text { is }\)

1 \(x^2+y^2-6 x+4=0\)
2 \(x^2+y^2-3 x+1=0\)
3 \(x^2+y^2-4 y+2=0\)
4 \(x^2+y^2-6 x-6 y+10=0\)
Conic Section

120018 Let \(S_1 \Rightarrow x^2+y^2=9\) and \(S_2 \Rightarrow(x-2)^2+y^2=1\). Then the locus of center of a variable circle \(S_2\) which touches \(S_1\) internally and \(S_2\) externally always passes through the points

1 \((0, \pm \sqrt{3})\)
2 \(\left(\frac{1}{2}, \pm \frac{\sqrt{5}}{2}\right)\)
3 \(\left(2, \pm \frac{3}{2}\right)\)
4 \((1, \pm 2)\)
Conic Section

120019 Choose the correct statement about two circles whose equations are given below.
\(x^2+y^2-10 x-10 y+41=0\)
\(x^2+y^2-22 x-10 y+137=0\)

1 circle have same centre
2 circles have no meeting point
3 circles have only one meeting point
4 circles have two meeting points
Conic Section

120020 If the circle (x+a)^2+(y+b)^2=a^2 \text { and }(x+c)^2+\)
\((y+d)^2=d^2 \text { cuts orthogonally, then } b(b-2 d)=\)

1 \(c(c-2 a)\)
2 \(c(2 a-c)\)
3 \(\mathrm{d}(2 \mathrm{c}-\mathrm{a})\)
4 \(a(a-2 c)\)
Conic Section

120021 Equation of circle passes through the points of
\(\text { intersection of circles } x^2+y^2=6 \text { and } x^2+y^2-\)
\(6 x+8=0 \text { and point }(1,1) \text { is }\)

1 \(x^2+y^2-6 x+4=0\)
2 \(x^2+y^2-3 x+1=0\)
3 \(x^2+y^2-4 y+2=0\)
4 \(x^2+y^2-6 x-6 y+10=0\)
Conic Section

120018 Let \(S_1 \Rightarrow x^2+y^2=9\) and \(S_2 \Rightarrow(x-2)^2+y^2=1\). Then the locus of center of a variable circle \(S_2\) which touches \(S_1\) internally and \(S_2\) externally always passes through the points

1 \((0, \pm \sqrt{3})\)
2 \(\left(\frac{1}{2}, \pm \frac{\sqrt{5}}{2}\right)\)
3 \(\left(2, \pm \frac{3}{2}\right)\)
4 \((1, \pm 2)\)
Conic Section

120019 Choose the correct statement about two circles whose equations are given below.
\(x^2+y^2-10 x-10 y+41=0\)
\(x^2+y^2-22 x-10 y+137=0\)

1 circle have same centre
2 circles have no meeting point
3 circles have only one meeting point
4 circles have two meeting points
Conic Section

120020 If the circle (x+a)^2+(y+b)^2=a^2 \text { and }(x+c)^2+\)
\((y+d)^2=d^2 \text { cuts orthogonally, then } b(b-2 d)=\)

1 \(c(c-2 a)\)
2 \(c(2 a-c)\)
3 \(\mathrm{d}(2 \mathrm{c}-\mathrm{a})\)
4 \(a(a-2 c)\)
Conic Section

120021 Equation of circle passes through the points of
\(\text { intersection of circles } x^2+y^2=6 \text { and } x^2+y^2-\)
\(6 x+8=0 \text { and point }(1,1) \text { is }\)

1 \(x^2+y^2-6 x+4=0\)
2 \(x^2+y^2-3 x+1=0\)
3 \(x^2+y^2-4 y+2=0\)
4 \(x^2+y^2-6 x-6 y+10=0\)