Explanation:
B Given circle equation -
\(\mathrm{x}^2+\mathrm{y}^2-2 \mathrm{x}-6 \mathrm{y}-15=0\)
By comparing above equation with general equation of circle, centre \(\mathrm{c}_1(-\mathrm{g},-\mathrm{f})=(1,3)\)
Let, the coordinates of \(B\) be \((a, b)\)
Point \(0(1,3)\) divides the line connecting \(\mathrm{A}(4,1)\) and \(\mathrm{B}\) \((\mathrm{a}, \mathrm{b})\) in \(1: 1\) ratio
\(\mathrm{x}=\frac{\left(\mathrm{mx}_2+\mathrm{nx}_1\right)}{\mathrm{m}+\mathrm{n}}, \mathrm{y}=\frac{\mathrm{my}_2+\mathrm{ny}_1}{\mathrm{~m}+\mathrm{n}}\)
\(\mathrm{l}=\left(\frac{1 . \mathrm{a}+1 \times 4}{1+1}\right), 3=\frac{1 \times \mathrm{b}+1 \times 1}{1+1}\)
\(\mathrm{a}=-2, \mathrm{~b}=5\)Hence, coordinates \((a, b)=(-2,5)\)