Different Cases of Two Circles
Conic Section

120022 If one end of the diameter of \(x^2+y^2-2 x-6 y-15=0\) is \((4,1)\), then the co-ordinates of the other end is

1 \((5,-2)\)
2 \((-2,5)\)
3 \((1,3)\)
4 \(-2,-5\)
Conic Section

120023 If the angle between the circles
\(x^2+y^2-12 x-6 y+41=0 \text { and }\)
\(x^2+y^2+k x+6 y-59=0\) is \(45^{\circ}\), then a value of \(k\) is

1 0
2 -4
3 -3
4 -1
Conic Section

120024 If the segments of the straight lines \(x+y=6\) and \(x+2 y=4\) are two diameters of a circle passing through \((6,2)\), then the equation of that circle is

1 \(x^2+y^2-2 x-4 x-20=0\)
2 \(x^2+y^2+6 x-4 y-68=0\)
3 \(x^2+y^2-16 x+4 y+48=0\)
4 \(x^2+y^2+2 x-10 y-32=0\)
Conic Section

120025 For a circle of diameter \(R\), touching \(x^2+y^2-4 y\) \(=0\) and passing through \((4,5)\), which of the following is correct?

1 \(3 \leq \mathrm{R} \leq 7\)
2 \(0\lt \mathrm{R}\lt 3\)
3 \(\mathrm{R}>7\)
4 \(\frac{3}{2} \leq \mathrm{R} \leq \frac{7}{2}\)
Conic Section

120026 If the circles \(x^2+y^2-2 \lambda x-2 y-7=0\) and \(3\left(x^2\right.\) \(\left.+y^2\right)-8 x+29 y=0\) are orthogonal, then \(\lambda\) is equal to

1 4
2 3
3 2
4 1
Conic Section

120022 If one end of the diameter of \(x^2+y^2-2 x-6 y-15=0\) is \((4,1)\), then the co-ordinates of the other end is

1 \((5,-2)\)
2 \((-2,5)\)
3 \((1,3)\)
4 \(-2,-5\)
Conic Section

120023 If the angle between the circles
\(x^2+y^2-12 x-6 y+41=0 \text { and }\)
\(x^2+y^2+k x+6 y-59=0\) is \(45^{\circ}\), then a value of \(k\) is

1 0
2 -4
3 -3
4 -1
Conic Section

120024 If the segments of the straight lines \(x+y=6\) and \(x+2 y=4\) are two diameters of a circle passing through \((6,2)\), then the equation of that circle is

1 \(x^2+y^2-2 x-4 x-20=0\)
2 \(x^2+y^2+6 x-4 y-68=0\)
3 \(x^2+y^2-16 x+4 y+48=0\)
4 \(x^2+y^2+2 x-10 y-32=0\)
Conic Section

120025 For a circle of diameter \(R\), touching \(x^2+y^2-4 y\) \(=0\) and passing through \((4,5)\), which of the following is correct?

1 \(3 \leq \mathrm{R} \leq 7\)
2 \(0\lt \mathrm{R}\lt 3\)
3 \(\mathrm{R}>7\)
4 \(\frac{3}{2} \leq \mathrm{R} \leq \frac{7}{2}\)
Conic Section

120026 If the circles \(x^2+y^2-2 \lambda x-2 y-7=0\) and \(3\left(x^2\right.\) \(\left.+y^2\right)-8 x+29 y=0\) are orthogonal, then \(\lambda\) is equal to

1 4
2 3
3 2
4 1
Conic Section

120022 If one end of the diameter of \(x^2+y^2-2 x-6 y-15=0\) is \((4,1)\), then the co-ordinates of the other end is

1 \((5,-2)\)
2 \((-2,5)\)
3 \((1,3)\)
4 \(-2,-5\)
Conic Section

120023 If the angle between the circles
\(x^2+y^2-12 x-6 y+41=0 \text { and }\)
\(x^2+y^2+k x+6 y-59=0\) is \(45^{\circ}\), then a value of \(k\) is

1 0
2 -4
3 -3
4 -1
Conic Section

120024 If the segments of the straight lines \(x+y=6\) and \(x+2 y=4\) are two diameters of a circle passing through \((6,2)\), then the equation of that circle is

1 \(x^2+y^2-2 x-4 x-20=0\)
2 \(x^2+y^2+6 x-4 y-68=0\)
3 \(x^2+y^2-16 x+4 y+48=0\)
4 \(x^2+y^2+2 x-10 y-32=0\)
Conic Section

120025 For a circle of diameter \(R\), touching \(x^2+y^2-4 y\) \(=0\) and passing through \((4,5)\), which of the following is correct?

1 \(3 \leq \mathrm{R} \leq 7\)
2 \(0\lt \mathrm{R}\lt 3\)
3 \(\mathrm{R}>7\)
4 \(\frac{3}{2} \leq \mathrm{R} \leq \frac{7}{2}\)
Conic Section

120026 If the circles \(x^2+y^2-2 \lambda x-2 y-7=0\) and \(3\left(x^2\right.\) \(\left.+y^2\right)-8 x+29 y=0\) are orthogonal, then \(\lambda\) is equal to

1 4
2 3
3 2
4 1
Conic Section

120022 If one end of the diameter of \(x^2+y^2-2 x-6 y-15=0\) is \((4,1)\), then the co-ordinates of the other end is

1 \((5,-2)\)
2 \((-2,5)\)
3 \((1,3)\)
4 \(-2,-5\)
Conic Section

120023 If the angle between the circles
\(x^2+y^2-12 x-6 y+41=0 \text { and }\)
\(x^2+y^2+k x+6 y-59=0\) is \(45^{\circ}\), then a value of \(k\) is

1 0
2 -4
3 -3
4 -1
Conic Section

120024 If the segments of the straight lines \(x+y=6\) and \(x+2 y=4\) are two diameters of a circle passing through \((6,2)\), then the equation of that circle is

1 \(x^2+y^2-2 x-4 x-20=0\)
2 \(x^2+y^2+6 x-4 y-68=0\)
3 \(x^2+y^2-16 x+4 y+48=0\)
4 \(x^2+y^2+2 x-10 y-32=0\)
Conic Section

120025 For a circle of diameter \(R\), touching \(x^2+y^2-4 y\) \(=0\) and passing through \((4,5)\), which of the following is correct?

1 \(3 \leq \mathrm{R} \leq 7\)
2 \(0\lt \mathrm{R}\lt 3\)
3 \(\mathrm{R}>7\)
4 \(\frac{3}{2} \leq \mathrm{R} \leq \frac{7}{2}\)
Conic Section

120026 If the circles \(x^2+y^2-2 \lambda x-2 y-7=0\) and \(3\left(x^2\right.\) \(\left.+y^2\right)-8 x+29 y=0\) are orthogonal, then \(\lambda\) is equal to

1 4
2 3
3 2
4 1
Conic Section

120022 If one end of the diameter of \(x^2+y^2-2 x-6 y-15=0\) is \((4,1)\), then the co-ordinates of the other end is

1 \((5,-2)\)
2 \((-2,5)\)
3 \((1,3)\)
4 \(-2,-5\)
Conic Section

120023 If the angle between the circles
\(x^2+y^2-12 x-6 y+41=0 \text { and }\)
\(x^2+y^2+k x+6 y-59=0\) is \(45^{\circ}\), then a value of \(k\) is

1 0
2 -4
3 -3
4 -1
Conic Section

120024 If the segments of the straight lines \(x+y=6\) and \(x+2 y=4\) are two diameters of a circle passing through \((6,2)\), then the equation of that circle is

1 \(x^2+y^2-2 x-4 x-20=0\)
2 \(x^2+y^2+6 x-4 y-68=0\)
3 \(x^2+y^2-16 x+4 y+48=0\)
4 \(x^2+y^2+2 x-10 y-32=0\)
Conic Section

120025 For a circle of diameter \(R\), touching \(x^2+y^2-4 y\) \(=0\) and passing through \((4,5)\), which of the following is correct?

1 \(3 \leq \mathrm{R} \leq 7\)
2 \(0\lt \mathrm{R}\lt 3\)
3 \(\mathrm{R}>7\)
4 \(\frac{3}{2} \leq \mathrm{R} \leq \frac{7}{2}\)
Conic Section

120026 If the circles \(x^2+y^2-2 \lambda x-2 y-7=0\) and \(3\left(x^2\right.\) \(\left.+y^2\right)-8 x+29 y=0\) are orthogonal, then \(\lambda\) is equal to

1 4
2 3
3 2
4 1