Different Cases of Two Circles
Conic Section

120002 Find the value of \(m+n\), if the circumference of the circle \(x^2+y^2+8 x+8 y-m=0\) is bisected by the circle \(x^2+y^2-2 x+4 y+n=0\).

1 -56
2 56
3 50
4 -04
Conic Section

120003 The point on the circle \(x^2+y^2=4\) whose distance from the line \(4 x+3 y-12=0\) is \(4 / 5\) units is equal to

1 \(\left(\frac{12}{25}, \frac{36}{25}\right)\)
2 \((4,0)\)
3 \((2,0)\)
4 \(\left(\frac{-14}{25}, \frac{48}{25}\right)\)
Conic Section

120006 If one of the two circle
\(x^2+y^2+\alpha_1(x-y)+c=0\) and
\(x^2+y^2+\alpha_2(x-y)+c=0\), lies within the
other, then \(\qquad\) (where \(\alpha_1, \alpha_2 \in \mathbf{R}, \alpha_1 \neq \alpha_2\) )

1 \(\mathrm{c}\lt 0\)
2 \(c=0\)
3 \(c>0\)
4 \(c \geq 0\)
Conic Section

120007 The length of the chord intercepted by the circle \(x^2+y^2-6 x+8 y-5=0\) on the line \(2 x-y\) \(=5\) is equal to ..... units

1 10
2 12
3 7
4 8
Conic Section

120002 Find the value of \(m+n\), if the circumference of the circle \(x^2+y^2+8 x+8 y-m=0\) is bisected by the circle \(x^2+y^2-2 x+4 y+n=0\).

1 -56
2 56
3 50
4 -04
Conic Section

120003 The point on the circle \(x^2+y^2=4\) whose distance from the line \(4 x+3 y-12=0\) is \(4 / 5\) units is equal to

1 \(\left(\frac{12}{25}, \frac{36}{25}\right)\)
2 \((4,0)\)
3 \((2,0)\)
4 \(\left(\frac{-14}{25}, \frac{48}{25}\right)\)
Conic Section

120006 If one of the two circle
\(x^2+y^2+\alpha_1(x-y)+c=0\) and
\(x^2+y^2+\alpha_2(x-y)+c=0\), lies within the
other, then \(\qquad\) (where \(\alpha_1, \alpha_2 \in \mathbf{R}, \alpha_1 \neq \alpha_2\) )

1 \(\mathrm{c}\lt 0\)
2 \(c=0\)
3 \(c>0\)
4 \(c \geq 0\)
Conic Section

120007 The length of the chord intercepted by the circle \(x^2+y^2-6 x+8 y-5=0\) on the line \(2 x-y\) \(=5\) is equal to ..... units

1 10
2 12
3 7
4 8
Conic Section

120002 Find the value of \(m+n\), if the circumference of the circle \(x^2+y^2+8 x+8 y-m=0\) is bisected by the circle \(x^2+y^2-2 x+4 y+n=0\).

1 -56
2 56
3 50
4 -04
Conic Section

120003 The point on the circle \(x^2+y^2=4\) whose distance from the line \(4 x+3 y-12=0\) is \(4 / 5\) units is equal to

1 \(\left(\frac{12}{25}, \frac{36}{25}\right)\)
2 \((4,0)\)
3 \((2,0)\)
4 \(\left(\frac{-14}{25}, \frac{48}{25}\right)\)
Conic Section

120006 If one of the two circle
\(x^2+y^2+\alpha_1(x-y)+c=0\) and
\(x^2+y^2+\alpha_2(x-y)+c=0\), lies within the
other, then \(\qquad\) (where \(\alpha_1, \alpha_2 \in \mathbf{R}, \alpha_1 \neq \alpha_2\) )

1 \(\mathrm{c}\lt 0\)
2 \(c=0\)
3 \(c>0\)
4 \(c \geq 0\)
Conic Section

120007 The length of the chord intercepted by the circle \(x^2+y^2-6 x+8 y-5=0\) on the line \(2 x-y\) \(=5\) is equal to ..... units

1 10
2 12
3 7
4 8
Conic Section

120002 Find the value of \(m+n\), if the circumference of the circle \(x^2+y^2+8 x+8 y-m=0\) is bisected by the circle \(x^2+y^2-2 x+4 y+n=0\).

1 -56
2 56
3 50
4 -04
Conic Section

120003 The point on the circle \(x^2+y^2=4\) whose distance from the line \(4 x+3 y-12=0\) is \(4 / 5\) units is equal to

1 \(\left(\frac{12}{25}, \frac{36}{25}\right)\)
2 \((4,0)\)
3 \((2,0)\)
4 \(\left(\frac{-14}{25}, \frac{48}{25}\right)\)
Conic Section

120006 If one of the two circle
\(x^2+y^2+\alpha_1(x-y)+c=0\) and
\(x^2+y^2+\alpha_2(x-y)+c=0\), lies within the
other, then \(\qquad\) (where \(\alpha_1, \alpha_2 \in \mathbf{R}, \alpha_1 \neq \alpha_2\) )

1 \(\mathrm{c}\lt 0\)
2 \(c=0\)
3 \(c>0\)
4 \(c \geq 0\)
Conic Section

120007 The length of the chord intercepted by the circle \(x^2+y^2-6 x+8 y-5=0\) on the line \(2 x-y\) \(=5\) is equal to ..... units

1 10
2 12
3 7
4 8
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here