Tangent and Normal to Circle
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Conic Section

119884 If the line \(4 x+4 y-11=0\) intersects the circle \(x^2+\) \(y^2-4 x-6 y+4=0\) at \(A\) and \(B\), then the point of intersection of the tangents drawn at \(A, B\) is

1 \((-1,12)\)
2 \((-1,-2)\)
3 \((2,1)\)
4 \((-2,-1)\)
Conic Section

119885 The length of the tangent drawn from any point on the circle \(x^2+y^2+2 g x+2 f y+c_1=0\) to the circle is \(x^2+y^2+2 g x+2 f y+c_2=0\) is

1 \(\sqrt{c_2-c_1}\)
2 \(\sqrt{\mathrm{c}_1^2+\mathrm{c}_2^2}\)
3 \(\mathrm{c}_1+\mathrm{c}_2\)
4 \(\mathrm{c}_1-\mathrm{c}_2\)
Conic Section

119886 If \(3 x+y+k=0\) is a tangent to the circle \(\mathbf{x}^2+\mathrm{y}^2=\mathbf{1 0}\), then \(\mathrm{k}=\) \(\qquad\)

1 \(\pm 7\)
2 \(\pm 5\)
3 \(\pm 9\)
4 \(\pm 10\)
Conic Section

119887 Given that \(a>2 b>0\) and that the line \(\mathbf{y}=\mathbf{m x}-\mathbf{b} \sqrt{1+\mathbf{m}^2}\) is a common tangent to the circles \(x^2+y^2=b^2\) and \((x-a)^2+y^2=b^2\). Then the positive value of \(m\) is

1 \(\frac{2 b}{a-2 b}\)
2 \(\frac{\mathrm{b}}{\mathrm{a}-2 \mathrm{~b}}\)
3 \(\frac{\sqrt{\mathrm{a}^2-4 \mathrm{~b}^2}}{2 \mathrm{~b}}\)
4 \(\frac{2 b}{\sqrt{a^2-4 b^2}}\)
Conic Section

119884 If the line \(4 x+4 y-11=0\) intersects the circle \(x^2+\) \(y^2-4 x-6 y+4=0\) at \(A\) and \(B\), then the point of intersection of the tangents drawn at \(A, B\) is

1 \((-1,12)\)
2 \((-1,-2)\)
3 \((2,1)\)
4 \((-2,-1)\)
Conic Section

119885 The length of the tangent drawn from any point on the circle \(x^2+y^2+2 g x+2 f y+c_1=0\) to the circle is \(x^2+y^2+2 g x+2 f y+c_2=0\) is

1 \(\sqrt{c_2-c_1}\)
2 \(\sqrt{\mathrm{c}_1^2+\mathrm{c}_2^2}\)
3 \(\mathrm{c}_1+\mathrm{c}_2\)
4 \(\mathrm{c}_1-\mathrm{c}_2\)
Conic Section

119886 If \(3 x+y+k=0\) is a tangent to the circle \(\mathbf{x}^2+\mathrm{y}^2=\mathbf{1 0}\), then \(\mathrm{k}=\) \(\qquad\)

1 \(\pm 7\)
2 \(\pm 5\)
3 \(\pm 9\)
4 \(\pm 10\)
Conic Section

119887 Given that \(a>2 b>0\) and that the line \(\mathbf{y}=\mathbf{m x}-\mathbf{b} \sqrt{1+\mathbf{m}^2}\) is a common tangent to the circles \(x^2+y^2=b^2\) and \((x-a)^2+y^2=b^2\). Then the positive value of \(m\) is

1 \(\frac{2 b}{a-2 b}\)
2 \(\frac{\mathrm{b}}{\mathrm{a}-2 \mathrm{~b}}\)
3 \(\frac{\sqrt{\mathrm{a}^2-4 \mathrm{~b}^2}}{2 \mathrm{~b}}\)
4 \(\frac{2 b}{\sqrt{a^2-4 b^2}}\)
Conic Section

119884 If the line \(4 x+4 y-11=0\) intersects the circle \(x^2+\) \(y^2-4 x-6 y+4=0\) at \(A\) and \(B\), then the point of intersection of the tangents drawn at \(A, B\) is

1 \((-1,12)\)
2 \((-1,-2)\)
3 \((2,1)\)
4 \((-2,-1)\)
Conic Section

119885 The length of the tangent drawn from any point on the circle \(x^2+y^2+2 g x+2 f y+c_1=0\) to the circle is \(x^2+y^2+2 g x+2 f y+c_2=0\) is

1 \(\sqrt{c_2-c_1}\)
2 \(\sqrt{\mathrm{c}_1^2+\mathrm{c}_2^2}\)
3 \(\mathrm{c}_1+\mathrm{c}_2\)
4 \(\mathrm{c}_1-\mathrm{c}_2\)
Conic Section

119886 If \(3 x+y+k=0\) is a tangent to the circle \(\mathbf{x}^2+\mathrm{y}^2=\mathbf{1 0}\), then \(\mathrm{k}=\) \(\qquad\)

1 \(\pm 7\)
2 \(\pm 5\)
3 \(\pm 9\)
4 \(\pm 10\)
Conic Section

119887 Given that \(a>2 b>0\) and that the line \(\mathbf{y}=\mathbf{m x}-\mathbf{b} \sqrt{1+\mathbf{m}^2}\) is a common tangent to the circles \(x^2+y^2=b^2\) and \((x-a)^2+y^2=b^2\). Then the positive value of \(m\) is

1 \(\frac{2 b}{a-2 b}\)
2 \(\frac{\mathrm{b}}{\mathrm{a}-2 \mathrm{~b}}\)
3 \(\frac{\sqrt{\mathrm{a}^2-4 \mathrm{~b}^2}}{2 \mathrm{~b}}\)
4 \(\frac{2 b}{\sqrt{a^2-4 b^2}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Conic Section

119884 If the line \(4 x+4 y-11=0\) intersects the circle \(x^2+\) \(y^2-4 x-6 y+4=0\) at \(A\) and \(B\), then the point of intersection of the tangents drawn at \(A, B\) is

1 \((-1,12)\)
2 \((-1,-2)\)
3 \((2,1)\)
4 \((-2,-1)\)
Conic Section

119885 The length of the tangent drawn from any point on the circle \(x^2+y^2+2 g x+2 f y+c_1=0\) to the circle is \(x^2+y^2+2 g x+2 f y+c_2=0\) is

1 \(\sqrt{c_2-c_1}\)
2 \(\sqrt{\mathrm{c}_1^2+\mathrm{c}_2^2}\)
3 \(\mathrm{c}_1+\mathrm{c}_2\)
4 \(\mathrm{c}_1-\mathrm{c}_2\)
Conic Section

119886 If \(3 x+y+k=0\) is a tangent to the circle \(\mathbf{x}^2+\mathrm{y}^2=\mathbf{1 0}\), then \(\mathrm{k}=\) \(\qquad\)

1 \(\pm 7\)
2 \(\pm 5\)
3 \(\pm 9\)
4 \(\pm 10\)
Conic Section

119887 Given that \(a>2 b>0\) and that the line \(\mathbf{y}=\mathbf{m x}-\mathbf{b} \sqrt{1+\mathbf{m}^2}\) is a common tangent to the circles \(x^2+y^2=b^2\) and \((x-a)^2+y^2=b^2\). Then the positive value of \(m\) is

1 \(\frac{2 b}{a-2 b}\)
2 \(\frac{\mathrm{b}}{\mathrm{a}-2 \mathrm{~b}}\)
3 \(\frac{\sqrt{\mathrm{a}^2-4 \mathrm{~b}^2}}{2 \mathrm{~b}}\)
4 \(\frac{2 b}{\sqrt{a^2-4 b^2}}\)