Tangent and Normal to Circle
Conic Section

119888 A point \(P\) lies on the circle \(x^2+y^2=169\). If \(Q=\) \((5,12)\) and \(R=(-12,5)\), then the angle \(\angle Q P R\) is

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{2}\)
Conic Section

119889 If the lengths of the tangents from the point \((1\), 2) to the circles \(x^2+y^2+x+y-4=0\) and \(3 x^2+\) \(3 y^2-x-y-\lambda=0\) are in the ratio \(4: 3\), then the value of \(\lambda\) is

1 \(\frac{21}{2}\)
2 \(\frac{21}{4}\)
3 \(\frac{21}{5}\)
4 \(\frac{21}{11}\)
Conic Section

119891 Suppose the tangents drawn to the circle \(x^2+y^2\) \(-6 x-4 y-11=0\) from \(P(1,8)\) touch the circle at \(A\) and \(B\). Then the centre of the circle passing through \(P, A\) and \(B\) is

1 \((2,5)\)
2 \((-2,-5)\)
3 \((-2,5)\)
4 \((2,-5)\)
Conic Section

119892 The circle possessing \(y\)-axis as its tangent at \((0,2)\) and passing through \((-1,0)\), also passes through

1 \(\left(\frac{-3}{2}, 0\right)\)
2 \(\left(\frac{-5}{2}, 2\right)\)
3 \(\left(\frac{-3}{2}, \frac{5}{2}\right)\)
4 \((-4,0)\)
Conic Section

119893 The slop of the normal to the circle \(x^2+y^2+\) \(\mathbf{2 g x}+\mathbf{2 f y}+\mathbf{c}=\mathbf{0}\) at \(\left(\mathrm{x}_1, \mathrm{y}_1\right)\) is

1 \(-\left(\frac{x_1+g}{y_1+f}\right)\)
2 \(-\left(\frac{y_1+f}{x_1+g}\right)\)
3 \(\frac{x_1+g}{y_1+f}\)
4 \(\frac{y_1+f}{x_1+g}\)
Conic Section

119888 A point \(P\) lies on the circle \(x^2+y^2=169\). If \(Q=\) \((5,12)\) and \(R=(-12,5)\), then the angle \(\angle Q P R\) is

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{2}\)
Conic Section

119889 If the lengths of the tangents from the point \((1\), 2) to the circles \(x^2+y^2+x+y-4=0\) and \(3 x^2+\) \(3 y^2-x-y-\lambda=0\) are in the ratio \(4: 3\), then the value of \(\lambda\) is

1 \(\frac{21}{2}\)
2 \(\frac{21}{4}\)
3 \(\frac{21}{5}\)
4 \(\frac{21}{11}\)
Conic Section

119891 Suppose the tangents drawn to the circle \(x^2+y^2\) \(-6 x-4 y-11=0\) from \(P(1,8)\) touch the circle at \(A\) and \(B\). Then the centre of the circle passing through \(P, A\) and \(B\) is

1 \((2,5)\)
2 \((-2,-5)\)
3 \((-2,5)\)
4 \((2,-5)\)
Conic Section

119892 The circle possessing \(y\)-axis as its tangent at \((0,2)\) and passing through \((-1,0)\), also passes through

1 \(\left(\frac{-3}{2}, 0\right)\)
2 \(\left(\frac{-5}{2}, 2\right)\)
3 \(\left(\frac{-3}{2}, \frac{5}{2}\right)\)
4 \((-4,0)\)
Conic Section

119893 The slop of the normal to the circle \(x^2+y^2+\) \(\mathbf{2 g x}+\mathbf{2 f y}+\mathbf{c}=\mathbf{0}\) at \(\left(\mathrm{x}_1, \mathrm{y}_1\right)\) is

1 \(-\left(\frac{x_1+g}{y_1+f}\right)\)
2 \(-\left(\frac{y_1+f}{x_1+g}\right)\)
3 \(\frac{x_1+g}{y_1+f}\)
4 \(\frac{y_1+f}{x_1+g}\)
Conic Section

119888 A point \(P\) lies on the circle \(x^2+y^2=169\). If \(Q=\) \((5,12)\) and \(R=(-12,5)\), then the angle \(\angle Q P R\) is

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{2}\)
Conic Section

119889 If the lengths of the tangents from the point \((1\), 2) to the circles \(x^2+y^2+x+y-4=0\) and \(3 x^2+\) \(3 y^2-x-y-\lambda=0\) are in the ratio \(4: 3\), then the value of \(\lambda\) is

1 \(\frac{21}{2}\)
2 \(\frac{21}{4}\)
3 \(\frac{21}{5}\)
4 \(\frac{21}{11}\)
Conic Section

119891 Suppose the tangents drawn to the circle \(x^2+y^2\) \(-6 x-4 y-11=0\) from \(P(1,8)\) touch the circle at \(A\) and \(B\). Then the centre of the circle passing through \(P, A\) and \(B\) is

1 \((2,5)\)
2 \((-2,-5)\)
3 \((-2,5)\)
4 \((2,-5)\)
Conic Section

119892 The circle possessing \(y\)-axis as its tangent at \((0,2)\) and passing through \((-1,0)\), also passes through

1 \(\left(\frac{-3}{2}, 0\right)\)
2 \(\left(\frac{-5}{2}, 2\right)\)
3 \(\left(\frac{-3}{2}, \frac{5}{2}\right)\)
4 \((-4,0)\)
Conic Section

119893 The slop of the normal to the circle \(x^2+y^2+\) \(\mathbf{2 g x}+\mathbf{2 f y}+\mathbf{c}=\mathbf{0}\) at \(\left(\mathrm{x}_1, \mathrm{y}_1\right)\) is

1 \(-\left(\frac{x_1+g}{y_1+f}\right)\)
2 \(-\left(\frac{y_1+f}{x_1+g}\right)\)
3 \(\frac{x_1+g}{y_1+f}\)
4 \(\frac{y_1+f}{x_1+g}\)
Conic Section

119888 A point \(P\) lies on the circle \(x^2+y^2=169\). If \(Q=\) \((5,12)\) and \(R=(-12,5)\), then the angle \(\angle Q P R\) is

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{2}\)
Conic Section

119889 If the lengths of the tangents from the point \((1\), 2) to the circles \(x^2+y^2+x+y-4=0\) and \(3 x^2+\) \(3 y^2-x-y-\lambda=0\) are in the ratio \(4: 3\), then the value of \(\lambda\) is

1 \(\frac{21}{2}\)
2 \(\frac{21}{4}\)
3 \(\frac{21}{5}\)
4 \(\frac{21}{11}\)
Conic Section

119891 Suppose the tangents drawn to the circle \(x^2+y^2\) \(-6 x-4 y-11=0\) from \(P(1,8)\) touch the circle at \(A\) and \(B\). Then the centre of the circle passing through \(P, A\) and \(B\) is

1 \((2,5)\)
2 \((-2,-5)\)
3 \((-2,5)\)
4 \((2,-5)\)
Conic Section

119892 The circle possessing \(y\)-axis as its tangent at \((0,2)\) and passing through \((-1,0)\), also passes through

1 \(\left(\frac{-3}{2}, 0\right)\)
2 \(\left(\frac{-5}{2}, 2\right)\)
3 \(\left(\frac{-3}{2}, \frac{5}{2}\right)\)
4 \((-4,0)\)
Conic Section

119893 The slop of the normal to the circle \(x^2+y^2+\) \(\mathbf{2 g x}+\mathbf{2 f y}+\mathbf{c}=\mathbf{0}\) at \(\left(\mathrm{x}_1, \mathrm{y}_1\right)\) is

1 \(-\left(\frac{x_1+g}{y_1+f}\right)\)
2 \(-\left(\frac{y_1+f}{x_1+g}\right)\)
3 \(\frac{x_1+g}{y_1+f}\)
4 \(\frac{y_1+f}{x_1+g}\)
Conic Section

119888 A point \(P\) lies on the circle \(x^2+y^2=169\). If \(Q=\) \((5,12)\) and \(R=(-12,5)\), then the angle \(\angle Q P R\) is

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{2}\)
Conic Section

119889 If the lengths of the tangents from the point \((1\), 2) to the circles \(x^2+y^2+x+y-4=0\) and \(3 x^2+\) \(3 y^2-x-y-\lambda=0\) are in the ratio \(4: 3\), then the value of \(\lambda\) is

1 \(\frac{21}{2}\)
2 \(\frac{21}{4}\)
3 \(\frac{21}{5}\)
4 \(\frac{21}{11}\)
Conic Section

119891 Suppose the tangents drawn to the circle \(x^2+y^2\) \(-6 x-4 y-11=0\) from \(P(1,8)\) touch the circle at \(A\) and \(B\). Then the centre of the circle passing through \(P, A\) and \(B\) is

1 \((2,5)\)
2 \((-2,-5)\)
3 \((-2,5)\)
4 \((2,-5)\)
Conic Section

119892 The circle possessing \(y\)-axis as its tangent at \((0,2)\) and passing through \((-1,0)\), also passes through

1 \(\left(\frac{-3}{2}, 0\right)\)
2 \(\left(\frac{-5}{2}, 2\right)\)
3 \(\left(\frac{-3}{2}, \frac{5}{2}\right)\)
4 \((-4,0)\)
Conic Section

119893 The slop of the normal to the circle \(x^2+y^2+\) \(\mathbf{2 g x}+\mathbf{2 f y}+\mathbf{c}=\mathbf{0}\) at \(\left(\mathrm{x}_1, \mathrm{y}_1\right)\) is

1 \(-\left(\frac{x_1+g}{y_1+f}\right)\)
2 \(-\left(\frac{y_1+f}{x_1+g}\right)\)
3 \(\frac{x_1+g}{y_1+f}\)
4 \(\frac{y_1+f}{x_1+g}\)