Equation of Circle in Different Forms
Conic Section

119782 The point diametrically opposite to the point \(P(1,0)\) on the circle \(x^2+y^2+2 x+4 y-3=0\) is

1 \((3,4)\)
2 \((3,-4)\)
3 \((-3,4)\)
4 \((-3,-4)\)
[-2011]
Conic Section

119783 The equation of the circle passing through the points \((1,0)\) and \((0,1)\) and having the smallest radius is

1 \(x^2+y^2+x+y-2=0\)
2 \(x^2+y^2-2 x-2 y+1=0\)
3 \(x^2+y^2-x-y=0\)
4 \(x^2+y^2+2 x+2 y-7=0\)
[-2011]
Conic Section

119784 The length of the diameter of the circle which touches the \(\mathrm{X}\)-axis at the point \((1,0)\) and passes through the point \((2,3)\) is

1 \(\frac{10}{3}\)
2 \(\frac{3}{5}\)
3 \(\frac{6}{5}\)
4 \(\frac{5}{3}\)
[-2012]
Conic Section

119785 If a circle of radius \(R\) passes through the origin \(O\) and intersects the coordinate axes at \(A\) and \(B\), then the locus of the foot of perpendicular from \(O\) on \(A B\) is

1 \(\left(x^2+y^2\right)^2=4 R^2 x^2 y^2\)
2 \(\left(x^2+y^2\right)^3=4 R^2 x^2 y^2\)
3 \(\left(x^2+y^2\right)(x+y)=R^2 x y\)
4 \(\left(x^2+y^2\right)^2=4 R x^2 y^2\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Conic Section

119782 The point diametrically opposite to the point \(P(1,0)\) on the circle \(x^2+y^2+2 x+4 y-3=0\) is

1 \((3,4)\)
2 \((3,-4)\)
3 \((-3,4)\)
4 \((-3,-4)\)
[-2011]
Conic Section

119783 The equation of the circle passing through the points \((1,0)\) and \((0,1)\) and having the smallest radius is

1 \(x^2+y^2+x+y-2=0\)
2 \(x^2+y^2-2 x-2 y+1=0\)
3 \(x^2+y^2-x-y=0\)
4 \(x^2+y^2+2 x+2 y-7=0\)
[-2011]
Conic Section

119784 The length of the diameter of the circle which touches the \(\mathrm{X}\)-axis at the point \((1,0)\) and passes through the point \((2,3)\) is

1 \(\frac{10}{3}\)
2 \(\frac{3}{5}\)
3 \(\frac{6}{5}\)
4 \(\frac{5}{3}\)
[-2012]
Conic Section

119785 If a circle of radius \(R\) passes through the origin \(O\) and intersects the coordinate axes at \(A\) and \(B\), then the locus of the foot of perpendicular from \(O\) on \(A B\) is

1 \(\left(x^2+y^2\right)^2=4 R^2 x^2 y^2\)
2 \(\left(x^2+y^2\right)^3=4 R^2 x^2 y^2\)
3 \(\left(x^2+y^2\right)(x+y)=R^2 x y\)
4 \(\left(x^2+y^2\right)^2=4 R x^2 y^2\)
Conic Section

119782 The point diametrically opposite to the point \(P(1,0)\) on the circle \(x^2+y^2+2 x+4 y-3=0\) is

1 \((3,4)\)
2 \((3,-4)\)
3 \((-3,4)\)
4 \((-3,-4)\)
[-2011]
Conic Section

119783 The equation of the circle passing through the points \((1,0)\) and \((0,1)\) and having the smallest radius is

1 \(x^2+y^2+x+y-2=0\)
2 \(x^2+y^2-2 x-2 y+1=0\)
3 \(x^2+y^2-x-y=0\)
4 \(x^2+y^2+2 x+2 y-7=0\)
[-2011]
Conic Section

119784 The length of the diameter of the circle which touches the \(\mathrm{X}\)-axis at the point \((1,0)\) and passes through the point \((2,3)\) is

1 \(\frac{10}{3}\)
2 \(\frac{3}{5}\)
3 \(\frac{6}{5}\)
4 \(\frac{5}{3}\)
[-2012]
Conic Section

119785 If a circle of radius \(R\) passes through the origin \(O\) and intersects the coordinate axes at \(A\) and \(B\), then the locus of the foot of perpendicular from \(O\) on \(A B\) is

1 \(\left(x^2+y^2\right)^2=4 R^2 x^2 y^2\)
2 \(\left(x^2+y^2\right)^3=4 R^2 x^2 y^2\)
3 \(\left(x^2+y^2\right)(x+y)=R^2 x y\)
4 \(\left(x^2+y^2\right)^2=4 R x^2 y^2\)
Conic Section

119782 The point diametrically opposite to the point \(P(1,0)\) on the circle \(x^2+y^2+2 x+4 y-3=0\) is

1 \((3,4)\)
2 \((3,-4)\)
3 \((-3,4)\)
4 \((-3,-4)\)
[-2011]
Conic Section

119783 The equation of the circle passing through the points \((1,0)\) and \((0,1)\) and having the smallest radius is

1 \(x^2+y^2+x+y-2=0\)
2 \(x^2+y^2-2 x-2 y+1=0\)
3 \(x^2+y^2-x-y=0\)
4 \(x^2+y^2+2 x+2 y-7=0\)
[-2011]
Conic Section

119784 The length of the diameter of the circle which touches the \(\mathrm{X}\)-axis at the point \((1,0)\) and passes through the point \((2,3)\) is

1 \(\frac{10}{3}\)
2 \(\frac{3}{5}\)
3 \(\frac{6}{5}\)
4 \(\frac{5}{3}\)
[-2012]
Conic Section

119785 If a circle of radius \(R\) passes through the origin \(O\) and intersects the coordinate axes at \(A\) and \(B\), then the locus of the foot of perpendicular from \(O\) on \(A B\) is

1 \(\left(x^2+y^2\right)^2=4 R^2 x^2 y^2\)
2 \(\left(x^2+y^2\right)^3=4 R^2 x^2 y^2\)
3 \(\left(x^2+y^2\right)(x+y)=R^2 x y\)
4 \(\left(x^2+y^2\right)^2=4 R x^2 y^2\)