Equation of Circle in Different Forms
Conic Section

119778 The radius of a circle whose center is \((2,1)\) and one of the chords is a diameter of the circle \(x^2+\) \(y^2-2 x-6 y+6=0\) is \(\qquad\) units.

1 3
2 4
3 2
4 1
Conic Section

119779 The straight line \(x \cos \alpha+y \sin \alpha=p\) cuts the circle \(x^2+y^2-a^2=0\) at \(A\) and \(B\). Then the equation of circle having \(A B\) as diameter is

1 \(x^2+y^2-a^2+p(x \cos \alpha+y \sin \alpha-p)=0\)
2 \(x^2+y^2-a^2+p(x \cos \alpha+y \sin \alpha+p)=0\)
3 \(x^2+y^2-a^2+2 p(x \cos \alpha+y \sin \alpha-p)=0\)
4 \(x^2+y^2-a^2-2 p(x \cos \alpha+y \sin \alpha-p)=0\)
Conic Section

119780 If the area of an equilateral triangle inscribed in the circle, \(x^2+y^2+10 x+12 y+c=0\) is \(27 \sqrt{3}\) sq units, then \(c\) is equal to

1 20
2 -25
3 13
4 25
Conic Section

119781 If a circle passes through the point \((a, b)\) and cuts the circle \(x^2+y^2=p^2\) orthogonally, then the equation of the locus of its centre is

1 \(2 a x+2 b y-\left(a^2+b^2+p^2\right)=0\)
2 \(x^2+y^2-2 a x-3 b y+\left(a^2-b^2-p^2\right)=0\)
3 \(2 a x+2 b y-\left(a^2-b^2+p^2\right)=0\)
4 \(x^2+y^2-3 a x-4 b y+\left(a^2+b^2-p^2\right)=0\)
Conic Section

119778 The radius of a circle whose center is \((2,1)\) and one of the chords is a diameter of the circle \(x^2+\) \(y^2-2 x-6 y+6=0\) is \(\qquad\) units.

1 3
2 4
3 2
4 1
Conic Section

119779 The straight line \(x \cos \alpha+y \sin \alpha=p\) cuts the circle \(x^2+y^2-a^2=0\) at \(A\) and \(B\). Then the equation of circle having \(A B\) as diameter is

1 \(x^2+y^2-a^2+p(x \cos \alpha+y \sin \alpha-p)=0\)
2 \(x^2+y^2-a^2+p(x \cos \alpha+y \sin \alpha+p)=0\)
3 \(x^2+y^2-a^2+2 p(x \cos \alpha+y \sin \alpha-p)=0\)
4 \(x^2+y^2-a^2-2 p(x \cos \alpha+y \sin \alpha-p)=0\)
Conic Section

119780 If the area of an equilateral triangle inscribed in the circle, \(x^2+y^2+10 x+12 y+c=0\) is \(27 \sqrt{3}\) sq units, then \(c\) is equal to

1 20
2 -25
3 13
4 25
Conic Section

119781 If a circle passes through the point \((a, b)\) and cuts the circle \(x^2+y^2=p^2\) orthogonally, then the equation of the locus of its centre is

1 \(2 a x+2 b y-\left(a^2+b^2+p^2\right)=0\)
2 \(x^2+y^2-2 a x-3 b y+\left(a^2-b^2-p^2\right)=0\)
3 \(2 a x+2 b y-\left(a^2-b^2+p^2\right)=0\)
4 \(x^2+y^2-3 a x-4 b y+\left(a^2+b^2-p^2\right)=0\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Conic Section

119778 The radius of a circle whose center is \((2,1)\) and one of the chords is a diameter of the circle \(x^2+\) \(y^2-2 x-6 y+6=0\) is \(\qquad\) units.

1 3
2 4
3 2
4 1
Conic Section

119779 The straight line \(x \cos \alpha+y \sin \alpha=p\) cuts the circle \(x^2+y^2-a^2=0\) at \(A\) and \(B\). Then the equation of circle having \(A B\) as diameter is

1 \(x^2+y^2-a^2+p(x \cos \alpha+y \sin \alpha-p)=0\)
2 \(x^2+y^2-a^2+p(x \cos \alpha+y \sin \alpha+p)=0\)
3 \(x^2+y^2-a^2+2 p(x \cos \alpha+y \sin \alpha-p)=0\)
4 \(x^2+y^2-a^2-2 p(x \cos \alpha+y \sin \alpha-p)=0\)
Conic Section

119780 If the area of an equilateral triangle inscribed in the circle, \(x^2+y^2+10 x+12 y+c=0\) is \(27 \sqrt{3}\) sq units, then \(c\) is equal to

1 20
2 -25
3 13
4 25
Conic Section

119781 If a circle passes through the point \((a, b)\) and cuts the circle \(x^2+y^2=p^2\) orthogonally, then the equation of the locus of its centre is

1 \(2 a x+2 b y-\left(a^2+b^2+p^2\right)=0\)
2 \(x^2+y^2-2 a x-3 b y+\left(a^2-b^2-p^2\right)=0\)
3 \(2 a x+2 b y-\left(a^2-b^2+p^2\right)=0\)
4 \(x^2+y^2-3 a x-4 b y+\left(a^2+b^2-p^2\right)=0\)
Conic Section

119778 The radius of a circle whose center is \((2,1)\) and one of the chords is a diameter of the circle \(x^2+\) \(y^2-2 x-6 y+6=0\) is \(\qquad\) units.

1 3
2 4
3 2
4 1
Conic Section

119779 The straight line \(x \cos \alpha+y \sin \alpha=p\) cuts the circle \(x^2+y^2-a^2=0\) at \(A\) and \(B\). Then the equation of circle having \(A B\) as diameter is

1 \(x^2+y^2-a^2+p(x \cos \alpha+y \sin \alpha-p)=0\)
2 \(x^2+y^2-a^2+p(x \cos \alpha+y \sin \alpha+p)=0\)
3 \(x^2+y^2-a^2+2 p(x \cos \alpha+y \sin \alpha-p)=0\)
4 \(x^2+y^2-a^2-2 p(x \cos \alpha+y \sin \alpha-p)=0\)
Conic Section

119780 If the area of an equilateral triangle inscribed in the circle, \(x^2+y^2+10 x+12 y+c=0\) is \(27 \sqrt{3}\) sq units, then \(c\) is equal to

1 20
2 -25
3 13
4 25
Conic Section

119781 If a circle passes through the point \((a, b)\) and cuts the circle \(x^2+y^2=p^2\) orthogonally, then the equation of the locus of its centre is

1 \(2 a x+2 b y-\left(a^2+b^2+p^2\right)=0\)
2 \(x^2+y^2-2 a x-3 b y+\left(a^2-b^2-p^2\right)=0\)
3 \(2 a x+2 b y-\left(a^2-b^2+p^2\right)=0\)
4 \(x^2+y^2-3 a x-4 b y+\left(a^2+b^2-p^2\right)=0\)