Equation of Circle in Different Forms
Conic Section

119734 The locus of the point of intersection of the lines \(x=a\left(\frac{1-t^2}{1+t^2}\right)\) and \(y=\frac{2 a t}{1+t^2}\) represent \((t\) being a parameter)

1 circle
2 parabola
3 ellipse
4 hyperbola
Conic Section

119735 If the coordinates at one end of a diameter of the circle \(x^2+y^2-8 x-4 y+c=0\) are \((-3,2)\), then the coordinates at the other end are

1 \((5,3)\)
2 \((6,2)\)
3 \((1,-8)\)
4 \((11,2)\)
Conic Section

119736 The equation of the circle, the end-points of whose diameter are the centers of the circles \(x^2+y^2-2 x+3 y-3=0\) and \(\mathrm{x}^2+\mathrm{y}^2+6 \mathrm{x}-12 \mathrm{y}-5=0\)

1 \(2 x^2+2 y^2+4 x+9 y-24=0\)
2 \(2 \mathrm{x}^2+2 \mathrm{y}^2+4 \mathrm{x}-9 \mathrm{y}+24=0\)
3 \(2 x^2+2 y^2+4 x-9 y-24=0\)
4 \(2 x^2+2 y^2-4 x-9 y-24=0\)
Conic Section

119737 The Cartesian equation of the curve \(x=3+5 \cos \theta, y=2+5 \sin \theta\) is \((0 \leq \theta \leq 2 \pi)\)

1 \(x^2+y^2+6 x-4 y+12=0\)
2 \(x^2+y^2-6 x+4 y-12=0\)
3 \(x^2+y^2+6 x+4 y+12=0\)
4 \(x^2+y^2-6 x-4 y-12=0\)
Conic Section

119734 The locus of the point of intersection of the lines \(x=a\left(\frac{1-t^2}{1+t^2}\right)\) and \(y=\frac{2 a t}{1+t^2}\) represent \((t\) being a parameter)

1 circle
2 parabola
3 ellipse
4 hyperbola
Conic Section

119735 If the coordinates at one end of a diameter of the circle \(x^2+y^2-8 x-4 y+c=0\) are \((-3,2)\), then the coordinates at the other end are

1 \((5,3)\)
2 \((6,2)\)
3 \((1,-8)\)
4 \((11,2)\)
Conic Section

119736 The equation of the circle, the end-points of whose diameter are the centers of the circles \(x^2+y^2-2 x+3 y-3=0\) and \(\mathrm{x}^2+\mathrm{y}^2+6 \mathrm{x}-12 \mathrm{y}-5=0\)

1 \(2 x^2+2 y^2+4 x+9 y-24=0\)
2 \(2 \mathrm{x}^2+2 \mathrm{y}^2+4 \mathrm{x}-9 \mathrm{y}+24=0\)
3 \(2 x^2+2 y^2+4 x-9 y-24=0\)
4 \(2 x^2+2 y^2-4 x-9 y-24=0\)
Conic Section

119737 The Cartesian equation of the curve \(x=3+5 \cos \theta, y=2+5 \sin \theta\) is \((0 \leq \theta \leq 2 \pi)\)

1 \(x^2+y^2+6 x-4 y+12=0\)
2 \(x^2+y^2-6 x+4 y-12=0\)
3 \(x^2+y^2+6 x+4 y+12=0\)
4 \(x^2+y^2-6 x-4 y-12=0\)
Conic Section

119734 The locus of the point of intersection of the lines \(x=a\left(\frac{1-t^2}{1+t^2}\right)\) and \(y=\frac{2 a t}{1+t^2}\) represent \((t\) being a parameter)

1 circle
2 parabola
3 ellipse
4 hyperbola
Conic Section

119735 If the coordinates at one end of a diameter of the circle \(x^2+y^2-8 x-4 y+c=0\) are \((-3,2)\), then the coordinates at the other end are

1 \((5,3)\)
2 \((6,2)\)
3 \((1,-8)\)
4 \((11,2)\)
Conic Section

119736 The equation of the circle, the end-points of whose diameter are the centers of the circles \(x^2+y^2-2 x+3 y-3=0\) and \(\mathrm{x}^2+\mathrm{y}^2+6 \mathrm{x}-12 \mathrm{y}-5=0\)

1 \(2 x^2+2 y^2+4 x+9 y-24=0\)
2 \(2 \mathrm{x}^2+2 \mathrm{y}^2+4 \mathrm{x}-9 \mathrm{y}+24=0\)
3 \(2 x^2+2 y^2+4 x-9 y-24=0\)
4 \(2 x^2+2 y^2-4 x-9 y-24=0\)
Conic Section

119737 The Cartesian equation of the curve \(x=3+5 \cos \theta, y=2+5 \sin \theta\) is \((0 \leq \theta \leq 2 \pi)\)

1 \(x^2+y^2+6 x-4 y+12=0\)
2 \(x^2+y^2-6 x+4 y-12=0\)
3 \(x^2+y^2+6 x+4 y+12=0\)
4 \(x^2+y^2-6 x-4 y-12=0\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Conic Section

119734 The locus of the point of intersection of the lines \(x=a\left(\frac{1-t^2}{1+t^2}\right)\) and \(y=\frac{2 a t}{1+t^2}\) represent \((t\) being a parameter)

1 circle
2 parabola
3 ellipse
4 hyperbola
Conic Section

119735 If the coordinates at one end of a diameter of the circle \(x^2+y^2-8 x-4 y+c=0\) are \((-3,2)\), then the coordinates at the other end are

1 \((5,3)\)
2 \((6,2)\)
3 \((1,-8)\)
4 \((11,2)\)
Conic Section

119736 The equation of the circle, the end-points of whose diameter are the centers of the circles \(x^2+y^2-2 x+3 y-3=0\) and \(\mathrm{x}^2+\mathrm{y}^2+6 \mathrm{x}-12 \mathrm{y}-5=0\)

1 \(2 x^2+2 y^2+4 x+9 y-24=0\)
2 \(2 \mathrm{x}^2+2 \mathrm{y}^2+4 \mathrm{x}-9 \mathrm{y}+24=0\)
3 \(2 x^2+2 y^2+4 x-9 y-24=0\)
4 \(2 x^2+2 y^2-4 x-9 y-24=0\)
Conic Section

119737 The Cartesian equation of the curve \(x=3+5 \cos \theta, y=2+5 \sin \theta\) is \((0 \leq \theta \leq 2 \pi)\)

1 \(x^2+y^2+6 x-4 y+12=0\)
2 \(x^2+y^2-6 x+4 y-12=0\)
3 \(x^2+y^2+6 x+4 y+12=0\)
4 \(x^2+y^2-6 x-4 y-12=0\)