Standard and General Form of Equation of a Circle
Conic Section

119709 If \(x^2+y^2-a^2+\lambda(x \cos \alpha+y \sin \alpha-p)=0\) is the smallest circle through the points of intersection of \(x^2+y^2=a^2\) and \(x \cos \alpha+y \sin \alpha=\) \(\mathbf{p}, \mathbf{0}\lt \mathbf{p}\lt \mathbf{a}\), then \(\lambda=\)

1 1
2 \(-\mathrm{p}\)
3 \(-2 \mathrm{p}\)
4 \(-3 \mathrm{p}\)
Conic Section

119710 If the poles of the line \(x-y=0\) with respect the circles \(x^2+y^2-2 g_i x+c_i^2=0(i=1,2,3)\) are \(\left(\alpha_i\right.\), \(\left.\beta_i\right)\), then \(\sum_{i=1}^3 \frac{\alpha_i+\beta_i}{g_i}=\)

1 3
2 6
3 \(\frac{3}{2}\)
4 \(\frac{3}{4}\)
Conic Section

119711 If the circle \(x^2+y^2=a^2\) intersects the hyperbola \(x y=b^2\) at four points \(\left(x_1, y_1\right),\left(x_2, y_2\right),\left(x_3, y_3\right)\), \(\left(\mathbf{x}_4, \mathbf{y}_4\right)\), then \(\mathbf{y}_1 \mathbf{y}_2 \mathbf{y}_3 \mathbf{y}_4=\)

1 a
2 0
3 \(b^4\)
4 \(b^2\)
Conic Section

119712 If \(\alpha \neq-4\) and \((2, \alpha)\) is the mid-point of a chord of the circle \(x^2+y^2-4 x+8 y+6=0\), then the values of the \(y\)-intercept of the chord lie in the interval

1 \((-4-\sqrt{14},-4+\sqrt{14})\)
2 \((-4,4)\)
3 \((4, \sqrt{14}, 4+\sqrt{14})\)
4 \((-2,2)\)
Conic Section

119709 If \(x^2+y^2-a^2+\lambda(x \cos \alpha+y \sin \alpha-p)=0\) is the smallest circle through the points of intersection of \(x^2+y^2=a^2\) and \(x \cos \alpha+y \sin \alpha=\) \(\mathbf{p}, \mathbf{0}\lt \mathbf{p}\lt \mathbf{a}\), then \(\lambda=\)

1 1
2 \(-\mathrm{p}\)
3 \(-2 \mathrm{p}\)
4 \(-3 \mathrm{p}\)
Conic Section

119710 If the poles of the line \(x-y=0\) with respect the circles \(x^2+y^2-2 g_i x+c_i^2=0(i=1,2,3)\) are \(\left(\alpha_i\right.\), \(\left.\beta_i\right)\), then \(\sum_{i=1}^3 \frac{\alpha_i+\beta_i}{g_i}=\)

1 3
2 6
3 \(\frac{3}{2}\)
4 \(\frac{3}{4}\)
Conic Section

119711 If the circle \(x^2+y^2=a^2\) intersects the hyperbola \(x y=b^2\) at four points \(\left(x_1, y_1\right),\left(x_2, y_2\right),\left(x_3, y_3\right)\), \(\left(\mathbf{x}_4, \mathbf{y}_4\right)\), then \(\mathbf{y}_1 \mathbf{y}_2 \mathbf{y}_3 \mathbf{y}_4=\)

1 a
2 0
3 \(b^4\)
4 \(b^2\)
Conic Section

119712 If \(\alpha \neq-4\) and \((2, \alpha)\) is the mid-point of a chord of the circle \(x^2+y^2-4 x+8 y+6=0\), then the values of the \(y\)-intercept of the chord lie in the interval

1 \((-4-\sqrt{14},-4+\sqrt{14})\)
2 \((-4,4)\)
3 \((4, \sqrt{14}, 4+\sqrt{14})\)
4 \((-2,2)\)
Conic Section

119709 If \(x^2+y^2-a^2+\lambda(x \cos \alpha+y \sin \alpha-p)=0\) is the smallest circle through the points of intersection of \(x^2+y^2=a^2\) and \(x \cos \alpha+y \sin \alpha=\) \(\mathbf{p}, \mathbf{0}\lt \mathbf{p}\lt \mathbf{a}\), then \(\lambda=\)

1 1
2 \(-\mathrm{p}\)
3 \(-2 \mathrm{p}\)
4 \(-3 \mathrm{p}\)
Conic Section

119710 If the poles of the line \(x-y=0\) with respect the circles \(x^2+y^2-2 g_i x+c_i^2=0(i=1,2,3)\) are \(\left(\alpha_i\right.\), \(\left.\beta_i\right)\), then \(\sum_{i=1}^3 \frac{\alpha_i+\beta_i}{g_i}=\)

1 3
2 6
3 \(\frac{3}{2}\)
4 \(\frac{3}{4}\)
Conic Section

119711 If the circle \(x^2+y^2=a^2\) intersects the hyperbola \(x y=b^2\) at four points \(\left(x_1, y_1\right),\left(x_2, y_2\right),\left(x_3, y_3\right)\), \(\left(\mathbf{x}_4, \mathbf{y}_4\right)\), then \(\mathbf{y}_1 \mathbf{y}_2 \mathbf{y}_3 \mathbf{y}_4=\)

1 a
2 0
3 \(b^4\)
4 \(b^2\)
Conic Section

119712 If \(\alpha \neq-4\) and \((2, \alpha)\) is the mid-point of a chord of the circle \(x^2+y^2-4 x+8 y+6=0\), then the values of the \(y\)-intercept of the chord lie in the interval

1 \((-4-\sqrt{14},-4+\sqrt{14})\)
2 \((-4,4)\)
3 \((4, \sqrt{14}, 4+\sqrt{14})\)
4 \((-2,2)\)
Conic Section

119709 If \(x^2+y^2-a^2+\lambda(x \cos \alpha+y \sin \alpha-p)=0\) is the smallest circle through the points of intersection of \(x^2+y^2=a^2\) and \(x \cos \alpha+y \sin \alpha=\) \(\mathbf{p}, \mathbf{0}\lt \mathbf{p}\lt \mathbf{a}\), then \(\lambda=\)

1 1
2 \(-\mathrm{p}\)
3 \(-2 \mathrm{p}\)
4 \(-3 \mathrm{p}\)
Conic Section

119710 If the poles of the line \(x-y=0\) with respect the circles \(x^2+y^2-2 g_i x+c_i^2=0(i=1,2,3)\) are \(\left(\alpha_i\right.\), \(\left.\beta_i\right)\), then \(\sum_{i=1}^3 \frac{\alpha_i+\beta_i}{g_i}=\)

1 3
2 6
3 \(\frac{3}{2}\)
4 \(\frac{3}{4}\)
Conic Section

119711 If the circle \(x^2+y^2=a^2\) intersects the hyperbola \(x y=b^2\) at four points \(\left(x_1, y_1\right),\left(x_2, y_2\right),\left(x_3, y_3\right)\), \(\left(\mathbf{x}_4, \mathbf{y}_4\right)\), then \(\mathbf{y}_1 \mathbf{y}_2 \mathbf{y}_3 \mathbf{y}_4=\)

1 a
2 0
3 \(b^4\)
4 \(b^2\)
Conic Section

119712 If \(\alpha \neq-4\) and \((2, \alpha)\) is the mid-point of a chord of the circle \(x^2+y^2-4 x+8 y+6=0\), then the values of the \(y\)-intercept of the chord lie in the interval

1 \((-4-\sqrt{14},-4+\sqrt{14})\)
2 \((-4,4)\)
3 \((4, \sqrt{14}, 4+\sqrt{14})\)
4 \((-2,2)\)