Standard and General Form of Equation of a Circle
Conic Section

119710 If the poles of the line xy=0 with respect the circles x2+y22gix+ci2=0(i=1,2,3) are (αi, βi), then i=13αi+βigi=

1 3
2 6
3 32
4 34
Conic Section

119711 If the circle x2+y2=a2 intersects the hyperbola xy=b2 at four points (x1,y1),(x2,y2),(x3,y3), (x4,y4), then y1y2y3y4=

1 a
2 0
3 b4
4 b2
Conic Section

119712 If α4 and (2,α) is the mid-point of a chord of the circle x2+y24x+8y+6=0, then the values of the y-intercept of the chord lie in the interval

1 (414,4+14)
2 (4,4)
3 (4,14,4+14)
4 (2,2)
Conic Section

119709 If x2+y2a2+λ(xcosα+ysinαp)=0 is the smallest circle through the points of intersection of x2+y2=a2 and xcosα+ysinα= p,0<p<a, then λ=

1 1
2 p
3 2p
4 3p
Conic Section

119710 If the poles of the line xy=0 with respect the circles x2+y22gix+ci2=0(i=1,2,3) are (αi, βi), then i=13αi+βigi=

1 3
2 6
3 32
4 34
Conic Section

119711 If the circle x2+y2=a2 intersects the hyperbola xy=b2 at four points (x1,y1),(x2,y2),(x3,y3), (x4,y4), then y1y2y3y4=

1 a
2 0
3 b4
4 b2
Conic Section

119712 If α4 and (2,α) is the mid-point of a chord of the circle x2+y24x+8y+6=0, then the values of the y-intercept of the chord lie in the interval

1 (414,4+14)
2 (4,4)
3 (4,14,4+14)
4 (2,2)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Conic Section

119709 If x2+y2a2+λ(xcosα+ysinαp)=0 is the smallest circle through the points of intersection of x2+y2=a2 and xcosα+ysinα= p,0<p<a, then λ=

1 1
2 p
3 2p
4 3p
Conic Section

119710 If the poles of the line xy=0 with respect the circles x2+y22gix+ci2=0(i=1,2,3) are (αi, βi), then i=13αi+βigi=

1 3
2 6
3 32
4 34
Conic Section

119711 If the circle x2+y2=a2 intersects the hyperbola xy=b2 at four points (x1,y1),(x2,y2),(x3,y3), (x4,y4), then y1y2y3y4=

1 a
2 0
3 b4
4 b2
Conic Section

119712 If α4 and (2,α) is the mid-point of a chord of the circle x2+y24x+8y+6=0, then the values of the y-intercept of the chord lie in the interval

1 (414,4+14)
2 (4,4)
3 (4,14,4+14)
4 (2,2)
Conic Section

119709 If x2+y2a2+λ(xcosα+ysinαp)=0 is the smallest circle through the points of intersection of x2+y2=a2 and xcosα+ysinα= p,0<p<a, then λ=

1 1
2 p
3 2p
4 3p
Conic Section

119710 If the poles of the line xy=0 with respect the circles x2+y22gix+ci2=0(i=1,2,3) are (αi, βi), then i=13αi+βigi=

1 3
2 6
3 32
4 34
Conic Section

119711 If the circle x2+y2=a2 intersects the hyperbola xy=b2 at four points (x1,y1),(x2,y2),(x3,y3), (x4,y4), then y1y2y3y4=

1 a
2 0
3 b4
4 b2
Conic Section

119712 If α4 and (2,α) is the mid-point of a chord of the circle x2+y24x+8y+6=0, then the values of the y-intercept of the chord lie in the interval

1 (414,4+14)
2 (4,4)
3 (4,14,4+14)
4 (2,2)