NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Straight Line
88747
If \(p\) is the length of perpendicular from origin to the line whose intercepts on the axes are \(a\) and \(b\), then \(\frac{1}{a^{2}}+\frac{1}{b^{2}}\) is equal to
1 \(\mathrm{p}^{2}\)
2 \(\frac{1}{p^{2}}\)
3 \(2 \mathrm{p}^{2}\)
4 \(\frac{1}{2 p^{2}}\)
Explanation:
(B) : Equation of line in intercept form is
\(\frac{x}{a}+\frac{y}{b}=1 \Rightarrow \frac{x}{a}+\frac{y}{b}-1=0\)
Its distance from origin is \(\mathrm{p}\)
\(\therefore \quad\left|\frac{0+0-1}{\sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}}\right|=\mathrm{p}\)
\(\Rightarrow p=\frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}}}\)
\(\Rightarrow \frac{1}{\mathrm{p}}=\sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}\)
Now, squaring both sides, we get \(\frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}\)
COMEDK-2019
Straight Line
88748
The point on the line \(4 x+3 y=5\), which is equidistant from \((1,2)\) and \((3,4)\), is
1 \((7,-4)\)
2 \((-10,15)\)
3 \(\left(\frac{1}{7}, \frac{8}{7}\right)\)
4 \(\left(0, \frac{5}{4}\right)\)
Explanation:
(B) : Let the point \((x, y)\) be on the line \(4 x+3 y=5\) \(\therefore \quad 4 \mathrm{x}_{1}+3 \mathrm{y}_{1}=5\)
Distance of point \(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) from \((1,2)\)
\(\therefore \quad\left(\mathrm{x}_{1}-1\right)^{2}+\left(\mathrm{y}_{1}-2\right)^{2}\)
And,
Distance of point \(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) from \((3,4)\)
\(\therefore \quad\left(\mathrm{x}_{1}-3\right)^{2}+\left(\mathrm{y}_{1}-4\right)^{2}\)
Given that the point \(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) is equidistant from \((1,2)\) and \((3,4)\)
\(\therefore\left(\mathrm{x}_{1}-1\right)^{2}+\left(\mathrm{y}_{1}-2\right)^{2}=\left(\mathrm{x}_{1}-3\right)^{2}+\left(\mathrm{y}_{1}-4\right)^{2}\)
\(\mathrm{x}_{1}{ }^{2}+1-2 \mathrm{x},+\mathrm{y}^{2}+4-4 \mathrm{y}_{1}=\mathrm{x}_{1}{ }^{2}+9-6 \mathrm{x}_{1}+\mathrm{y}_{1}{ }^{2}+16-\)
\(8 y\)
\(4 x_{1}+4 y_{1}=20\)
\(x_{1}+y_{1}=5 \tag{ii}\)
Form equation (i) and (ii) we get,
\(\mathrm{y}_{1}=15 \text { and } \quad \mathrm{x}_{1}=-10\)
Hence, the point will be \((-10,15)\)
UPSEE-2015
Straight Line
88749
Let \(P Q R\) be a right angled isosceles triangle, right angled at \(P(2,1)\). If the equation of the line \(Q R\) is \(2 x+y=3\), Then the equation representing the pair of lines \(P Q\) and \(P R\) is
1 \(3 x^{2}-3 y^{2}+8 x y+20 x+10 y+25=0\)
2 \(3 x^{2}-3 y^{2}+8 x y-20 x-10 y+25=0\)
3 \(3 x^{2}-3 y^{2}+8 x y+10 x+15 y+20=0\)
4 \(3 x^{2}-3 y^{2}-8 x y-10 x-15 y-20=0\)
Explanation:
(B) : The equation of PQ and PR are given by,
\(y-1=\frac{-2 \pm \tan 45^{\circ}}{1 \pm\left(-2 \tan 45^{\circ}\right)}(x-2)\)
\(\mathrm{y}-1=\left(\frac{-2 \mp 1}{1 \pm 2}\right)(\mathrm{x}-2)\)
\(\mathrm{y}-1=-\frac{1}{3}(\mathrm{x}-2)\)
and \(\quad \mathrm{y}-1=3(\mathrm{x}-2)\)
\(x+3 y=5\) and \(3 x-y=5\)
The combined equation of two line is,
\((x+3 y-5)(3 x-y-5)=0\)
Hence, \(3 x^{2}-3 y^{2}+8 x y-20 x-10 y+25=0\)
UPSEE-2010
Straight Line
88750
The distance of the point \(A(a, b, c)\) from the \(X\) axis is
1 a
2 \(\sqrt{b^{2}+c^{2}}\)
3 \(\sqrt{a^{2}+b^{2}}\)
4 \(a^{2}+b^{2}\)
Explanation:
(B) : Given the distance between the point
\(\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})\) and \(\mathrm{x}\)-axis
Distance \((d)=\sqrt{(a-a)^{2}+(0-b)^{2}+(0-c)^{2}}\)
\(\mathrm{d}=\sqrt{0^{2}+(-\mathrm{b})^{2}+(-\mathrm{c})^{2}}\)
\(\mathrm{d}=\sqrt{\mathrm{b}^{2}+\mathrm{c}^{2}}\)
88747
If \(p\) is the length of perpendicular from origin to the line whose intercepts on the axes are \(a\) and \(b\), then \(\frac{1}{a^{2}}+\frac{1}{b^{2}}\) is equal to
1 \(\mathrm{p}^{2}\)
2 \(\frac{1}{p^{2}}\)
3 \(2 \mathrm{p}^{2}\)
4 \(\frac{1}{2 p^{2}}\)
Explanation:
(B) : Equation of line in intercept form is
\(\frac{x}{a}+\frac{y}{b}=1 \Rightarrow \frac{x}{a}+\frac{y}{b}-1=0\)
Its distance from origin is \(\mathrm{p}\)
\(\therefore \quad\left|\frac{0+0-1}{\sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}}\right|=\mathrm{p}\)
\(\Rightarrow p=\frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}}}\)
\(\Rightarrow \frac{1}{\mathrm{p}}=\sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}\)
Now, squaring both sides, we get \(\frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}\)
COMEDK-2019
Straight Line
88748
The point on the line \(4 x+3 y=5\), which is equidistant from \((1,2)\) and \((3,4)\), is
1 \((7,-4)\)
2 \((-10,15)\)
3 \(\left(\frac{1}{7}, \frac{8}{7}\right)\)
4 \(\left(0, \frac{5}{4}\right)\)
Explanation:
(B) : Let the point \((x, y)\) be on the line \(4 x+3 y=5\) \(\therefore \quad 4 \mathrm{x}_{1}+3 \mathrm{y}_{1}=5\)
Distance of point \(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) from \((1,2)\)
\(\therefore \quad\left(\mathrm{x}_{1}-1\right)^{2}+\left(\mathrm{y}_{1}-2\right)^{2}\)
And,
Distance of point \(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) from \((3,4)\)
\(\therefore \quad\left(\mathrm{x}_{1}-3\right)^{2}+\left(\mathrm{y}_{1}-4\right)^{2}\)
Given that the point \(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) is equidistant from \((1,2)\) and \((3,4)\)
\(\therefore\left(\mathrm{x}_{1}-1\right)^{2}+\left(\mathrm{y}_{1}-2\right)^{2}=\left(\mathrm{x}_{1}-3\right)^{2}+\left(\mathrm{y}_{1}-4\right)^{2}\)
\(\mathrm{x}_{1}{ }^{2}+1-2 \mathrm{x},+\mathrm{y}^{2}+4-4 \mathrm{y}_{1}=\mathrm{x}_{1}{ }^{2}+9-6 \mathrm{x}_{1}+\mathrm{y}_{1}{ }^{2}+16-\)
\(8 y\)
\(4 x_{1}+4 y_{1}=20\)
\(x_{1}+y_{1}=5 \tag{ii}\)
Form equation (i) and (ii) we get,
\(\mathrm{y}_{1}=15 \text { and } \quad \mathrm{x}_{1}=-10\)
Hence, the point will be \((-10,15)\)
UPSEE-2015
Straight Line
88749
Let \(P Q R\) be a right angled isosceles triangle, right angled at \(P(2,1)\). If the equation of the line \(Q R\) is \(2 x+y=3\), Then the equation representing the pair of lines \(P Q\) and \(P R\) is
1 \(3 x^{2}-3 y^{2}+8 x y+20 x+10 y+25=0\)
2 \(3 x^{2}-3 y^{2}+8 x y-20 x-10 y+25=0\)
3 \(3 x^{2}-3 y^{2}+8 x y+10 x+15 y+20=0\)
4 \(3 x^{2}-3 y^{2}-8 x y-10 x-15 y-20=0\)
Explanation:
(B) : The equation of PQ and PR are given by,
\(y-1=\frac{-2 \pm \tan 45^{\circ}}{1 \pm\left(-2 \tan 45^{\circ}\right)}(x-2)\)
\(\mathrm{y}-1=\left(\frac{-2 \mp 1}{1 \pm 2}\right)(\mathrm{x}-2)\)
\(\mathrm{y}-1=-\frac{1}{3}(\mathrm{x}-2)\)
and \(\quad \mathrm{y}-1=3(\mathrm{x}-2)\)
\(x+3 y=5\) and \(3 x-y=5\)
The combined equation of two line is,
\((x+3 y-5)(3 x-y-5)=0\)
Hence, \(3 x^{2}-3 y^{2}+8 x y-20 x-10 y+25=0\)
UPSEE-2010
Straight Line
88750
The distance of the point \(A(a, b, c)\) from the \(X\) axis is
1 a
2 \(\sqrt{b^{2}+c^{2}}\)
3 \(\sqrt{a^{2}+b^{2}}\)
4 \(a^{2}+b^{2}\)
Explanation:
(B) : Given the distance between the point
\(\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})\) and \(\mathrm{x}\)-axis
Distance \((d)=\sqrt{(a-a)^{2}+(0-b)^{2}+(0-c)^{2}}\)
\(\mathrm{d}=\sqrt{0^{2}+(-\mathrm{b})^{2}+(-\mathrm{c})^{2}}\)
\(\mathrm{d}=\sqrt{\mathrm{b}^{2}+\mathrm{c}^{2}}\)
88747
If \(p\) is the length of perpendicular from origin to the line whose intercepts on the axes are \(a\) and \(b\), then \(\frac{1}{a^{2}}+\frac{1}{b^{2}}\) is equal to
1 \(\mathrm{p}^{2}\)
2 \(\frac{1}{p^{2}}\)
3 \(2 \mathrm{p}^{2}\)
4 \(\frac{1}{2 p^{2}}\)
Explanation:
(B) : Equation of line in intercept form is
\(\frac{x}{a}+\frac{y}{b}=1 \Rightarrow \frac{x}{a}+\frac{y}{b}-1=0\)
Its distance from origin is \(\mathrm{p}\)
\(\therefore \quad\left|\frac{0+0-1}{\sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}}\right|=\mathrm{p}\)
\(\Rightarrow p=\frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}}}\)
\(\Rightarrow \frac{1}{\mathrm{p}}=\sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}\)
Now, squaring both sides, we get \(\frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}\)
COMEDK-2019
Straight Line
88748
The point on the line \(4 x+3 y=5\), which is equidistant from \((1,2)\) and \((3,4)\), is
1 \((7,-4)\)
2 \((-10,15)\)
3 \(\left(\frac{1}{7}, \frac{8}{7}\right)\)
4 \(\left(0, \frac{5}{4}\right)\)
Explanation:
(B) : Let the point \((x, y)\) be on the line \(4 x+3 y=5\) \(\therefore \quad 4 \mathrm{x}_{1}+3 \mathrm{y}_{1}=5\)
Distance of point \(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) from \((1,2)\)
\(\therefore \quad\left(\mathrm{x}_{1}-1\right)^{2}+\left(\mathrm{y}_{1}-2\right)^{2}\)
And,
Distance of point \(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) from \((3,4)\)
\(\therefore \quad\left(\mathrm{x}_{1}-3\right)^{2}+\left(\mathrm{y}_{1}-4\right)^{2}\)
Given that the point \(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) is equidistant from \((1,2)\) and \((3,4)\)
\(\therefore\left(\mathrm{x}_{1}-1\right)^{2}+\left(\mathrm{y}_{1}-2\right)^{2}=\left(\mathrm{x}_{1}-3\right)^{2}+\left(\mathrm{y}_{1}-4\right)^{2}\)
\(\mathrm{x}_{1}{ }^{2}+1-2 \mathrm{x},+\mathrm{y}^{2}+4-4 \mathrm{y}_{1}=\mathrm{x}_{1}{ }^{2}+9-6 \mathrm{x}_{1}+\mathrm{y}_{1}{ }^{2}+16-\)
\(8 y\)
\(4 x_{1}+4 y_{1}=20\)
\(x_{1}+y_{1}=5 \tag{ii}\)
Form equation (i) and (ii) we get,
\(\mathrm{y}_{1}=15 \text { and } \quad \mathrm{x}_{1}=-10\)
Hence, the point will be \((-10,15)\)
UPSEE-2015
Straight Line
88749
Let \(P Q R\) be a right angled isosceles triangle, right angled at \(P(2,1)\). If the equation of the line \(Q R\) is \(2 x+y=3\), Then the equation representing the pair of lines \(P Q\) and \(P R\) is
1 \(3 x^{2}-3 y^{2}+8 x y+20 x+10 y+25=0\)
2 \(3 x^{2}-3 y^{2}+8 x y-20 x-10 y+25=0\)
3 \(3 x^{2}-3 y^{2}+8 x y+10 x+15 y+20=0\)
4 \(3 x^{2}-3 y^{2}-8 x y-10 x-15 y-20=0\)
Explanation:
(B) : The equation of PQ and PR are given by,
\(y-1=\frac{-2 \pm \tan 45^{\circ}}{1 \pm\left(-2 \tan 45^{\circ}\right)}(x-2)\)
\(\mathrm{y}-1=\left(\frac{-2 \mp 1}{1 \pm 2}\right)(\mathrm{x}-2)\)
\(\mathrm{y}-1=-\frac{1}{3}(\mathrm{x}-2)\)
and \(\quad \mathrm{y}-1=3(\mathrm{x}-2)\)
\(x+3 y=5\) and \(3 x-y=5\)
The combined equation of two line is,
\((x+3 y-5)(3 x-y-5)=0\)
Hence, \(3 x^{2}-3 y^{2}+8 x y-20 x-10 y+25=0\)
UPSEE-2010
Straight Line
88750
The distance of the point \(A(a, b, c)\) from the \(X\) axis is
1 a
2 \(\sqrt{b^{2}+c^{2}}\)
3 \(\sqrt{a^{2}+b^{2}}\)
4 \(a^{2}+b^{2}\)
Explanation:
(B) : Given the distance between the point
\(\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})\) and \(\mathrm{x}\)-axis
Distance \((d)=\sqrt{(a-a)^{2}+(0-b)^{2}+(0-c)^{2}}\)
\(\mathrm{d}=\sqrt{0^{2}+(-\mathrm{b})^{2}+(-\mathrm{c})^{2}}\)
\(\mathrm{d}=\sqrt{\mathrm{b}^{2}+\mathrm{c}^{2}}\)
88747
If \(p\) is the length of perpendicular from origin to the line whose intercepts on the axes are \(a\) and \(b\), then \(\frac{1}{a^{2}}+\frac{1}{b^{2}}\) is equal to
1 \(\mathrm{p}^{2}\)
2 \(\frac{1}{p^{2}}\)
3 \(2 \mathrm{p}^{2}\)
4 \(\frac{1}{2 p^{2}}\)
Explanation:
(B) : Equation of line in intercept form is
\(\frac{x}{a}+\frac{y}{b}=1 \Rightarrow \frac{x}{a}+\frac{y}{b}-1=0\)
Its distance from origin is \(\mathrm{p}\)
\(\therefore \quad\left|\frac{0+0-1}{\sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}}\right|=\mathrm{p}\)
\(\Rightarrow p=\frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}}}\)
\(\Rightarrow \frac{1}{\mathrm{p}}=\sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}\)
Now, squaring both sides, we get \(\frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}\)
COMEDK-2019
Straight Line
88748
The point on the line \(4 x+3 y=5\), which is equidistant from \((1,2)\) and \((3,4)\), is
1 \((7,-4)\)
2 \((-10,15)\)
3 \(\left(\frac{1}{7}, \frac{8}{7}\right)\)
4 \(\left(0, \frac{5}{4}\right)\)
Explanation:
(B) : Let the point \((x, y)\) be on the line \(4 x+3 y=5\) \(\therefore \quad 4 \mathrm{x}_{1}+3 \mathrm{y}_{1}=5\)
Distance of point \(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) from \((1,2)\)
\(\therefore \quad\left(\mathrm{x}_{1}-1\right)^{2}+\left(\mathrm{y}_{1}-2\right)^{2}\)
And,
Distance of point \(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) from \((3,4)\)
\(\therefore \quad\left(\mathrm{x}_{1}-3\right)^{2}+\left(\mathrm{y}_{1}-4\right)^{2}\)
Given that the point \(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) is equidistant from \((1,2)\) and \((3,4)\)
\(\therefore\left(\mathrm{x}_{1}-1\right)^{2}+\left(\mathrm{y}_{1}-2\right)^{2}=\left(\mathrm{x}_{1}-3\right)^{2}+\left(\mathrm{y}_{1}-4\right)^{2}\)
\(\mathrm{x}_{1}{ }^{2}+1-2 \mathrm{x},+\mathrm{y}^{2}+4-4 \mathrm{y}_{1}=\mathrm{x}_{1}{ }^{2}+9-6 \mathrm{x}_{1}+\mathrm{y}_{1}{ }^{2}+16-\)
\(8 y\)
\(4 x_{1}+4 y_{1}=20\)
\(x_{1}+y_{1}=5 \tag{ii}\)
Form equation (i) and (ii) we get,
\(\mathrm{y}_{1}=15 \text { and } \quad \mathrm{x}_{1}=-10\)
Hence, the point will be \((-10,15)\)
UPSEE-2015
Straight Line
88749
Let \(P Q R\) be a right angled isosceles triangle, right angled at \(P(2,1)\). If the equation of the line \(Q R\) is \(2 x+y=3\), Then the equation representing the pair of lines \(P Q\) and \(P R\) is
1 \(3 x^{2}-3 y^{2}+8 x y+20 x+10 y+25=0\)
2 \(3 x^{2}-3 y^{2}+8 x y-20 x-10 y+25=0\)
3 \(3 x^{2}-3 y^{2}+8 x y+10 x+15 y+20=0\)
4 \(3 x^{2}-3 y^{2}-8 x y-10 x-15 y-20=0\)
Explanation:
(B) : The equation of PQ and PR are given by,
\(y-1=\frac{-2 \pm \tan 45^{\circ}}{1 \pm\left(-2 \tan 45^{\circ}\right)}(x-2)\)
\(\mathrm{y}-1=\left(\frac{-2 \mp 1}{1 \pm 2}\right)(\mathrm{x}-2)\)
\(\mathrm{y}-1=-\frac{1}{3}(\mathrm{x}-2)\)
and \(\quad \mathrm{y}-1=3(\mathrm{x}-2)\)
\(x+3 y=5\) and \(3 x-y=5\)
The combined equation of two line is,
\((x+3 y-5)(3 x-y-5)=0\)
Hence, \(3 x^{2}-3 y^{2}+8 x y-20 x-10 y+25=0\)
UPSEE-2010
Straight Line
88750
The distance of the point \(A(a, b, c)\) from the \(X\) axis is
1 a
2 \(\sqrt{b^{2}+c^{2}}\)
3 \(\sqrt{a^{2}+b^{2}}\)
4 \(a^{2}+b^{2}\)
Explanation:
(B) : Given the distance between the point
\(\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})\) and \(\mathrm{x}\)-axis
Distance \((d)=\sqrt{(a-a)^{2}+(0-b)^{2}+(0-c)^{2}}\)
\(\mathrm{d}=\sqrt{0^{2}+(-\mathrm{b})^{2}+(-\mathrm{c})^{2}}\)
\(\mathrm{d}=\sqrt{\mathrm{b}^{2}+\mathrm{c}^{2}}\)