Distance of a Point from a Line
Straight Line

88751 If the algebraic sum of the perpendicular distance from the point \((2,0),(0,2)\) and \((1,1)\) to a variable straight line be zero, then the line passes through the point

1 \((-1,1)\)
2 \((1,1)\)
3 \((1,-1)\)
4 \((-1,-1)\)
Straight Line

88752 Identify the point on the line \(2 x+3 y+7=0\), which is at a distance of +3 units from \((1,3)\)

1 \(\left(\frac{\sqrt{13}+9}{\sqrt{13}}, \frac{-3 \sqrt{13}+6}{\sqrt{13}}\right)\)
2 \(\left(\frac{\sqrt{13}-9}{\sqrt{13}}, \frac{-3 \sqrt{13}-6}{\sqrt{13}}\right)\)
3 \(\left(\frac{\sqrt{13}-9}{\sqrt{13}}, \frac{-3 \sqrt{13}+6}{\sqrt{13}}\right)\)
4 \(\left(\frac{\sqrt{13}+9}{\sqrt{13}}, \frac{3 \sqrt{13}-6}{\sqrt{13}}\right)\)
Straight Line

88753 The equation of the base of an equilateral triangle is \(x+y=2\) and one vertex is \((2,-1)\), then the length of the side of the triangle is

1 \(\sqrt{3 / 2} / \sqrt{2 / 3}\)
2 \(\sqrt{2}\)
3 \(\sqrt{2 / 3}\)
4 \(\sqrt{3 / 2}\)
Straight Line

88754 If a point ' \(P\) ' on the line \(3 x+5 y=15\) is equidistant from the coordinate axes, then \(P\) lies \(3 x+5 y=15\)

1 Only in the first quadrant
2 Either in first or in second quadrant
3 Either in first or in third quadrant
4 Only in the third quadrant
Straight Line

88755 What is the perpendicular distance of a corner to the diagonal not passing through that corner?

1 \(\frac{2}{3}\)
2 \(\frac{\sqrt{3}}{2}\)
3 \(\sqrt{\frac{2}{3}}\)
4 None of the above
Straight Line

88751 If the algebraic sum of the perpendicular distance from the point \((2,0),(0,2)\) and \((1,1)\) to a variable straight line be zero, then the line passes through the point

1 \((-1,1)\)
2 \((1,1)\)
3 \((1,-1)\)
4 \((-1,-1)\)
Straight Line

88752 Identify the point on the line \(2 x+3 y+7=0\), which is at a distance of +3 units from \((1,3)\)

1 \(\left(\frac{\sqrt{13}+9}{\sqrt{13}}, \frac{-3 \sqrt{13}+6}{\sqrt{13}}\right)\)
2 \(\left(\frac{\sqrt{13}-9}{\sqrt{13}}, \frac{-3 \sqrt{13}-6}{\sqrt{13}}\right)\)
3 \(\left(\frac{\sqrt{13}-9}{\sqrt{13}}, \frac{-3 \sqrt{13}+6}{\sqrt{13}}\right)\)
4 \(\left(\frac{\sqrt{13}+9}{\sqrt{13}}, \frac{3 \sqrt{13}-6}{\sqrt{13}}\right)\)
Straight Line

88753 The equation of the base of an equilateral triangle is \(x+y=2\) and one vertex is \((2,-1)\), then the length of the side of the triangle is

1 \(\sqrt{3 / 2} / \sqrt{2 / 3}\)
2 \(\sqrt{2}\)
3 \(\sqrt{2 / 3}\)
4 \(\sqrt{3 / 2}\)
Straight Line

88754 If a point ' \(P\) ' on the line \(3 x+5 y=15\) is equidistant from the coordinate axes, then \(P\) lies \(3 x+5 y=15\)

1 Only in the first quadrant
2 Either in first or in second quadrant
3 Either in first or in third quadrant
4 Only in the third quadrant
Straight Line

88755 What is the perpendicular distance of a corner to the diagonal not passing through that corner?

1 \(\frac{2}{3}\)
2 \(\frac{\sqrt{3}}{2}\)
3 \(\sqrt{\frac{2}{3}}\)
4 None of the above
Straight Line

88751 If the algebraic sum of the perpendicular distance from the point \((2,0),(0,2)\) and \((1,1)\) to a variable straight line be zero, then the line passes through the point

1 \((-1,1)\)
2 \((1,1)\)
3 \((1,-1)\)
4 \((-1,-1)\)
Straight Line

88752 Identify the point on the line \(2 x+3 y+7=0\), which is at a distance of +3 units from \((1,3)\)

1 \(\left(\frac{\sqrt{13}+9}{\sqrt{13}}, \frac{-3 \sqrt{13}+6}{\sqrt{13}}\right)\)
2 \(\left(\frac{\sqrt{13}-9}{\sqrt{13}}, \frac{-3 \sqrt{13}-6}{\sqrt{13}}\right)\)
3 \(\left(\frac{\sqrt{13}-9}{\sqrt{13}}, \frac{-3 \sqrt{13}+6}{\sqrt{13}}\right)\)
4 \(\left(\frac{\sqrt{13}+9}{\sqrt{13}}, \frac{3 \sqrt{13}-6}{\sqrt{13}}\right)\)
Straight Line

88753 The equation of the base of an equilateral triangle is \(x+y=2\) and one vertex is \((2,-1)\), then the length of the side of the triangle is

1 \(\sqrt{3 / 2} / \sqrt{2 / 3}\)
2 \(\sqrt{2}\)
3 \(\sqrt{2 / 3}\)
4 \(\sqrt{3 / 2}\)
Straight Line

88754 If a point ' \(P\) ' on the line \(3 x+5 y=15\) is equidistant from the coordinate axes, then \(P\) lies \(3 x+5 y=15\)

1 Only in the first quadrant
2 Either in first or in second quadrant
3 Either in first or in third quadrant
4 Only in the third quadrant
Straight Line

88755 What is the perpendicular distance of a corner to the diagonal not passing through that corner?

1 \(\frac{2}{3}\)
2 \(\frac{\sqrt{3}}{2}\)
3 \(\sqrt{\frac{2}{3}}\)
4 None of the above
Straight Line

88751 If the algebraic sum of the perpendicular distance from the point \((2,0),(0,2)\) and \((1,1)\) to a variable straight line be zero, then the line passes through the point

1 \((-1,1)\)
2 \((1,1)\)
3 \((1,-1)\)
4 \((-1,-1)\)
Straight Line

88752 Identify the point on the line \(2 x+3 y+7=0\), which is at a distance of +3 units from \((1,3)\)

1 \(\left(\frac{\sqrt{13}+9}{\sqrt{13}}, \frac{-3 \sqrt{13}+6}{\sqrt{13}}\right)\)
2 \(\left(\frac{\sqrt{13}-9}{\sqrt{13}}, \frac{-3 \sqrt{13}-6}{\sqrt{13}}\right)\)
3 \(\left(\frac{\sqrt{13}-9}{\sqrt{13}}, \frac{-3 \sqrt{13}+6}{\sqrt{13}}\right)\)
4 \(\left(\frac{\sqrt{13}+9}{\sqrt{13}}, \frac{3 \sqrt{13}-6}{\sqrt{13}}\right)\)
Straight Line

88753 The equation of the base of an equilateral triangle is \(x+y=2\) and one vertex is \((2,-1)\), then the length of the side of the triangle is

1 \(\sqrt{3 / 2} / \sqrt{2 / 3}\)
2 \(\sqrt{2}\)
3 \(\sqrt{2 / 3}\)
4 \(\sqrt{3 / 2}\)
Straight Line

88754 If a point ' \(P\) ' on the line \(3 x+5 y=15\) is equidistant from the coordinate axes, then \(P\) lies \(3 x+5 y=15\)

1 Only in the first quadrant
2 Either in first or in second quadrant
3 Either in first or in third quadrant
4 Only in the third quadrant
Straight Line

88755 What is the perpendicular distance of a corner to the diagonal not passing through that corner?

1 \(\frac{2}{3}\)
2 \(\frac{\sqrt{3}}{2}\)
3 \(\sqrt{\frac{2}{3}}\)
4 None of the above
Straight Line

88751 If the algebraic sum of the perpendicular distance from the point \((2,0),(0,2)\) and \((1,1)\) to a variable straight line be zero, then the line passes through the point

1 \((-1,1)\)
2 \((1,1)\)
3 \((1,-1)\)
4 \((-1,-1)\)
Straight Line

88752 Identify the point on the line \(2 x+3 y+7=0\), which is at a distance of +3 units from \((1,3)\)

1 \(\left(\frac{\sqrt{13}+9}{\sqrt{13}}, \frac{-3 \sqrt{13}+6}{\sqrt{13}}\right)\)
2 \(\left(\frac{\sqrt{13}-9}{\sqrt{13}}, \frac{-3 \sqrt{13}-6}{\sqrt{13}}\right)\)
3 \(\left(\frac{\sqrt{13}-9}{\sqrt{13}}, \frac{-3 \sqrt{13}+6}{\sqrt{13}}\right)\)
4 \(\left(\frac{\sqrt{13}+9}{\sqrt{13}}, \frac{3 \sqrt{13}-6}{\sqrt{13}}\right)\)
Straight Line

88753 The equation of the base of an equilateral triangle is \(x+y=2\) and one vertex is \((2,-1)\), then the length of the side of the triangle is

1 \(\sqrt{3 / 2} / \sqrt{2 / 3}\)
2 \(\sqrt{2}\)
3 \(\sqrt{2 / 3}\)
4 \(\sqrt{3 / 2}\)
Straight Line

88754 If a point ' \(P\) ' on the line \(3 x+5 y=15\) is equidistant from the coordinate axes, then \(P\) lies \(3 x+5 y=15\)

1 Only in the first quadrant
2 Either in first or in second quadrant
3 Either in first or in third quadrant
4 Only in the third quadrant
Straight Line

88755 What is the perpendicular distance of a corner to the diagonal not passing through that corner?

1 \(\frac{2}{3}\)
2 \(\frac{\sqrt{3}}{2}\)
3 \(\sqrt{\frac{2}{3}}\)
4 None of the above