Locus and its Equation
Co-Ordinate system

88446 The locus of a point \(P(x, y)\) satisfying the equation \(\sqrt{(x-2)^{2}+y^{2}}+\sqrt{(x+2)^{2}+y^{2}}=4\), is

1 an ellipse
2 a parabola
3 a line segment
4 a circle
Co-Ordinate system

88447 The locus of the point of intersection of the straight lines
\(\frac{x}{a}+\frac{y}{b}=\lambda \text { and } \frac{x}{a}-\frac{y}{b}=\frac{1}{\lambda}\)
Where \(\lambda\) is a variable, is

1 a circle
2 a parabola
3 an ellipse
4 a hyperbola
Co-Ordinate system

88449 A line segment \(\mathbf{A M}=\mathbf{a}\) moves in the \(\mathrm{XOY}\) plane such that \(A M\) is parallel to the \(X\)-axis. If A moves along the circle \(x^{2}+y^{2}=a^{2}\), then the locus of \(M\) is

1 \(x^{2}+y^{2}=4 a^{2}\)
2 \(x^{2}+y^{2}=2 a x\)
3 \(x^{2}+y^{2}=2 a y\)
4 \(x^{2}+y^{2}=2 a x+2 a y\)
Co-Ordinate system

88450 Let \(O\) be the origin and \(A\) be a point on the curve \(y^{2}=4 x\). Then the locus of the mid point of

1 \(x^{2}=4 y\)
2 \(x^{2}=2 y\)
3 \(y^{2}=16 x\)
4 \(y^{2}=2 x\)
Co-Ordinate system

88451 \(A=(-9,0)\) and \((-1,0)\) are two points. If \(P=(x\), \(y\) ) is point such that \(3 \mathrm{~PB}=\mathrm{PA}\), then the locus of \(P\) is

1 \(x^{2}-y^{2}=9\)
2 \(x^{2}-y^{2}=-9\)
3 \(x^{2}+y^{2}=9\)
4 \(x^{2}+y^{2}=3\)
Co-Ordinate system

88446 The locus of a point \(P(x, y)\) satisfying the equation \(\sqrt{(x-2)^{2}+y^{2}}+\sqrt{(x+2)^{2}+y^{2}}=4\), is

1 an ellipse
2 a parabola
3 a line segment
4 a circle
Co-Ordinate system

88447 The locus of the point of intersection of the straight lines
\(\frac{x}{a}+\frac{y}{b}=\lambda \text { and } \frac{x}{a}-\frac{y}{b}=\frac{1}{\lambda}\)
Where \(\lambda\) is a variable, is

1 a circle
2 a parabola
3 an ellipse
4 a hyperbola
Co-Ordinate system

88449 A line segment \(\mathbf{A M}=\mathbf{a}\) moves in the \(\mathrm{XOY}\) plane such that \(A M\) is parallel to the \(X\)-axis. If A moves along the circle \(x^{2}+y^{2}=a^{2}\), then the locus of \(M\) is

1 \(x^{2}+y^{2}=4 a^{2}\)
2 \(x^{2}+y^{2}=2 a x\)
3 \(x^{2}+y^{2}=2 a y\)
4 \(x^{2}+y^{2}=2 a x+2 a y\)
Co-Ordinate system

88450 Let \(O\) be the origin and \(A\) be a point on the curve \(y^{2}=4 x\). Then the locus of the mid point of

1 \(x^{2}=4 y\)
2 \(x^{2}=2 y\)
3 \(y^{2}=16 x\)
4 \(y^{2}=2 x\)
Co-Ordinate system

88451 \(A=(-9,0)\) and \((-1,0)\) are two points. If \(P=(x\), \(y\) ) is point such that \(3 \mathrm{~PB}=\mathrm{PA}\), then the locus of \(P\) is

1 \(x^{2}-y^{2}=9\)
2 \(x^{2}-y^{2}=-9\)
3 \(x^{2}+y^{2}=9\)
4 \(x^{2}+y^{2}=3\)
Co-Ordinate system

88446 The locus of a point \(P(x, y)\) satisfying the equation \(\sqrt{(x-2)^{2}+y^{2}}+\sqrt{(x+2)^{2}+y^{2}}=4\), is

1 an ellipse
2 a parabola
3 a line segment
4 a circle
Co-Ordinate system

88447 The locus of the point of intersection of the straight lines
\(\frac{x}{a}+\frac{y}{b}=\lambda \text { and } \frac{x}{a}-\frac{y}{b}=\frac{1}{\lambda}\)
Where \(\lambda\) is a variable, is

1 a circle
2 a parabola
3 an ellipse
4 a hyperbola
Co-Ordinate system

88449 A line segment \(\mathbf{A M}=\mathbf{a}\) moves in the \(\mathrm{XOY}\) plane such that \(A M\) is parallel to the \(X\)-axis. If A moves along the circle \(x^{2}+y^{2}=a^{2}\), then the locus of \(M\) is

1 \(x^{2}+y^{2}=4 a^{2}\)
2 \(x^{2}+y^{2}=2 a x\)
3 \(x^{2}+y^{2}=2 a y\)
4 \(x^{2}+y^{2}=2 a x+2 a y\)
Co-Ordinate system

88450 Let \(O\) be the origin and \(A\) be a point on the curve \(y^{2}=4 x\). Then the locus of the mid point of

1 \(x^{2}=4 y\)
2 \(x^{2}=2 y\)
3 \(y^{2}=16 x\)
4 \(y^{2}=2 x\)
Co-Ordinate system

88451 \(A=(-9,0)\) and \((-1,0)\) are two points. If \(P=(x\), \(y\) ) is point such that \(3 \mathrm{~PB}=\mathrm{PA}\), then the locus of \(P\) is

1 \(x^{2}-y^{2}=9\)
2 \(x^{2}-y^{2}=-9\)
3 \(x^{2}+y^{2}=9\)
4 \(x^{2}+y^{2}=3\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Co-Ordinate system

88446 The locus of a point \(P(x, y)\) satisfying the equation \(\sqrt{(x-2)^{2}+y^{2}}+\sqrt{(x+2)^{2}+y^{2}}=4\), is

1 an ellipse
2 a parabola
3 a line segment
4 a circle
Co-Ordinate system

88447 The locus of the point of intersection of the straight lines
\(\frac{x}{a}+\frac{y}{b}=\lambda \text { and } \frac{x}{a}-\frac{y}{b}=\frac{1}{\lambda}\)
Where \(\lambda\) is a variable, is

1 a circle
2 a parabola
3 an ellipse
4 a hyperbola
Co-Ordinate system

88449 A line segment \(\mathbf{A M}=\mathbf{a}\) moves in the \(\mathrm{XOY}\) plane such that \(A M\) is parallel to the \(X\)-axis. If A moves along the circle \(x^{2}+y^{2}=a^{2}\), then the locus of \(M\) is

1 \(x^{2}+y^{2}=4 a^{2}\)
2 \(x^{2}+y^{2}=2 a x\)
3 \(x^{2}+y^{2}=2 a y\)
4 \(x^{2}+y^{2}=2 a x+2 a y\)
Co-Ordinate system

88450 Let \(O\) be the origin and \(A\) be a point on the curve \(y^{2}=4 x\). Then the locus of the mid point of

1 \(x^{2}=4 y\)
2 \(x^{2}=2 y\)
3 \(y^{2}=16 x\)
4 \(y^{2}=2 x\)
Co-Ordinate system

88451 \(A=(-9,0)\) and \((-1,0)\) are two points. If \(P=(x\), \(y\) ) is point such that \(3 \mathrm{~PB}=\mathrm{PA}\), then the locus of \(P\) is

1 \(x^{2}-y^{2}=9\)
2 \(x^{2}-y^{2}=-9\)
3 \(x^{2}+y^{2}=9\)
4 \(x^{2}+y^{2}=3\)
Co-Ordinate system

88446 The locus of a point \(P(x, y)\) satisfying the equation \(\sqrt{(x-2)^{2}+y^{2}}+\sqrt{(x+2)^{2}+y^{2}}=4\), is

1 an ellipse
2 a parabola
3 a line segment
4 a circle
Co-Ordinate system

88447 The locus of the point of intersection of the straight lines
\(\frac{x}{a}+\frac{y}{b}=\lambda \text { and } \frac{x}{a}-\frac{y}{b}=\frac{1}{\lambda}\)
Where \(\lambda\) is a variable, is

1 a circle
2 a parabola
3 an ellipse
4 a hyperbola
Co-Ordinate system

88449 A line segment \(\mathbf{A M}=\mathbf{a}\) moves in the \(\mathrm{XOY}\) plane such that \(A M\) is parallel to the \(X\)-axis. If A moves along the circle \(x^{2}+y^{2}=a^{2}\), then the locus of \(M\) is

1 \(x^{2}+y^{2}=4 a^{2}\)
2 \(x^{2}+y^{2}=2 a x\)
3 \(x^{2}+y^{2}=2 a y\)
4 \(x^{2}+y^{2}=2 a x+2 a y\)
Co-Ordinate system

88450 Let \(O\) be the origin and \(A\) be a point on the curve \(y^{2}=4 x\). Then the locus of the mid point of

1 \(x^{2}=4 y\)
2 \(x^{2}=2 y\)
3 \(y^{2}=16 x\)
4 \(y^{2}=2 x\)
Co-Ordinate system

88451 \(A=(-9,0)\) and \((-1,0)\) are two points. If \(P=(x\), \(y\) ) is point such that \(3 \mathrm{~PB}=\mathrm{PA}\), then the locus of \(P\) is

1 \(x^{2}-y^{2}=9\)
2 \(x^{2}-y^{2}=-9\)
3 \(x^{2}+y^{2}=9\)
4 \(x^{2}+y^{2}=3\)