Locus and its Equation
Co-Ordinate system

88442 Given points \(A(0,0), B(0,4)\) and \(O\) as the origin, find the locus of a point \(P\) such that area of triangle \(\mathrm{POB}\) is 2 time the area of triangle POA.

1 \(x^{2}-3 y^{2}=0\)
2 \(x^{2}+3 y^{2}=0\)
3 \(x^{2}-9 y^{2}=0\)
4 \(x^{2}-4 y^{2}=0\)
Co-Ordinate system

88443 If a circle of a constant radius 6 passes through origin \(O\) and meets the coordinate axes at \(A\) and \(B\), then find the locus of the centroid of triangle \(O A B\).

1 \(x^{2}+y^{2}=4\)
2 \(x^{2}+y^{2}=36\)
3 \(x^{2}+y^{2}=16\)
4 \(x^{2}+y^{2}=6\)
Co-Ordinate system

88444 A variable line passing through \((l, \mathrm{~m})\) intersects the coordinate axes at the points \(A\) and \(B\). If the lines drawn parallel to \(y\)-axis through \(A\) and parallel to \(x\)-axis through \(B\) meet at \(P\), then the locus of \(P\) is

1 \(\frac{l}{\mathrm{x}}+\frac{\mathrm{m}}{\mathrm{y}}=1\)
2 \(\frac{\mathrm{x}}{l}+\frac{\mathrm{y}}{\mathrm{m}}=1\)
3 \(\frac{\mathrm{m}}{\mathrm{x}}+\frac{l}{\mathrm{y}}=1\)
4 \(\frac{\mathrm{x}}{\mathrm{m}}+\frac{\mathrm{y}}{\mathrm{l}}=1\)
Co-Ordinate system

88445 A line passing through \(P(4,2)\) cuts the coordinate axes at \(A\) and \(B\) respectively. If \(O\) is the origin, then the locus of the centre of the circum-circle of \(\triangle \mathrm{OAB}\) is

1 \(x^{-1}+y^{-1}=2\)
2 \(2 \mathrm{x}^{-1}+\mathrm{y}^{-1}=1\)
3 \(\mathrm{x}^{-1}+2 \mathrm{y}^{-1}=1\)
4 \(2 \mathrm{x}^{-1}+3 \mathrm{y}^{-1}=1\)
Co-Ordinate system

88442 Given points \(A(0,0), B(0,4)\) and \(O\) as the origin, find the locus of a point \(P\) such that area of triangle \(\mathrm{POB}\) is 2 time the area of triangle POA.

1 \(x^{2}-3 y^{2}=0\)
2 \(x^{2}+3 y^{2}=0\)
3 \(x^{2}-9 y^{2}=0\)
4 \(x^{2}-4 y^{2}=0\)
Co-Ordinate system

88443 If a circle of a constant radius 6 passes through origin \(O\) and meets the coordinate axes at \(A\) and \(B\), then find the locus of the centroid of triangle \(O A B\).

1 \(x^{2}+y^{2}=4\)
2 \(x^{2}+y^{2}=36\)
3 \(x^{2}+y^{2}=16\)
4 \(x^{2}+y^{2}=6\)
Co-Ordinate system

88444 A variable line passing through \((l, \mathrm{~m})\) intersects the coordinate axes at the points \(A\) and \(B\). If the lines drawn parallel to \(y\)-axis through \(A\) and parallel to \(x\)-axis through \(B\) meet at \(P\), then the locus of \(P\) is

1 \(\frac{l}{\mathrm{x}}+\frac{\mathrm{m}}{\mathrm{y}}=1\)
2 \(\frac{\mathrm{x}}{l}+\frac{\mathrm{y}}{\mathrm{m}}=1\)
3 \(\frac{\mathrm{m}}{\mathrm{x}}+\frac{l}{\mathrm{y}}=1\)
4 \(\frac{\mathrm{x}}{\mathrm{m}}+\frac{\mathrm{y}}{\mathrm{l}}=1\)
Co-Ordinate system

88445 A line passing through \(P(4,2)\) cuts the coordinate axes at \(A\) and \(B\) respectively. If \(O\) is the origin, then the locus of the centre of the circum-circle of \(\triangle \mathrm{OAB}\) is

1 \(x^{-1}+y^{-1}=2\)
2 \(2 \mathrm{x}^{-1}+\mathrm{y}^{-1}=1\)
3 \(\mathrm{x}^{-1}+2 \mathrm{y}^{-1}=1\)
4 \(2 \mathrm{x}^{-1}+3 \mathrm{y}^{-1}=1\)
Co-Ordinate system

88442 Given points \(A(0,0), B(0,4)\) and \(O\) as the origin, find the locus of a point \(P\) such that area of triangle \(\mathrm{POB}\) is 2 time the area of triangle POA.

1 \(x^{2}-3 y^{2}=0\)
2 \(x^{2}+3 y^{2}=0\)
3 \(x^{2}-9 y^{2}=0\)
4 \(x^{2}-4 y^{2}=0\)
Co-Ordinate system

88443 If a circle of a constant radius 6 passes through origin \(O\) and meets the coordinate axes at \(A\) and \(B\), then find the locus of the centroid of triangle \(O A B\).

1 \(x^{2}+y^{2}=4\)
2 \(x^{2}+y^{2}=36\)
3 \(x^{2}+y^{2}=16\)
4 \(x^{2}+y^{2}=6\)
Co-Ordinate system

88444 A variable line passing through \((l, \mathrm{~m})\) intersects the coordinate axes at the points \(A\) and \(B\). If the lines drawn parallel to \(y\)-axis through \(A\) and parallel to \(x\)-axis through \(B\) meet at \(P\), then the locus of \(P\) is

1 \(\frac{l}{\mathrm{x}}+\frac{\mathrm{m}}{\mathrm{y}}=1\)
2 \(\frac{\mathrm{x}}{l}+\frac{\mathrm{y}}{\mathrm{m}}=1\)
3 \(\frac{\mathrm{m}}{\mathrm{x}}+\frac{l}{\mathrm{y}}=1\)
4 \(\frac{\mathrm{x}}{\mathrm{m}}+\frac{\mathrm{y}}{\mathrm{l}}=1\)
Co-Ordinate system

88445 A line passing through \(P(4,2)\) cuts the coordinate axes at \(A\) and \(B\) respectively. If \(O\) is the origin, then the locus of the centre of the circum-circle of \(\triangle \mathrm{OAB}\) is

1 \(x^{-1}+y^{-1}=2\)
2 \(2 \mathrm{x}^{-1}+\mathrm{y}^{-1}=1\)
3 \(\mathrm{x}^{-1}+2 \mathrm{y}^{-1}=1\)
4 \(2 \mathrm{x}^{-1}+3 \mathrm{y}^{-1}=1\)
Co-Ordinate system

88442 Given points \(A(0,0), B(0,4)\) and \(O\) as the origin, find the locus of a point \(P\) such that area of triangle \(\mathrm{POB}\) is 2 time the area of triangle POA.

1 \(x^{2}-3 y^{2}=0\)
2 \(x^{2}+3 y^{2}=0\)
3 \(x^{2}-9 y^{2}=0\)
4 \(x^{2}-4 y^{2}=0\)
Co-Ordinate system

88443 If a circle of a constant radius 6 passes through origin \(O\) and meets the coordinate axes at \(A\) and \(B\), then find the locus of the centroid of triangle \(O A B\).

1 \(x^{2}+y^{2}=4\)
2 \(x^{2}+y^{2}=36\)
3 \(x^{2}+y^{2}=16\)
4 \(x^{2}+y^{2}=6\)
Co-Ordinate system

88444 A variable line passing through \((l, \mathrm{~m})\) intersects the coordinate axes at the points \(A\) and \(B\). If the lines drawn parallel to \(y\)-axis through \(A\) and parallel to \(x\)-axis through \(B\) meet at \(P\), then the locus of \(P\) is

1 \(\frac{l}{\mathrm{x}}+\frac{\mathrm{m}}{\mathrm{y}}=1\)
2 \(\frac{\mathrm{x}}{l}+\frac{\mathrm{y}}{\mathrm{m}}=1\)
3 \(\frac{\mathrm{m}}{\mathrm{x}}+\frac{l}{\mathrm{y}}=1\)
4 \(\frac{\mathrm{x}}{\mathrm{m}}+\frac{\mathrm{y}}{\mathrm{l}}=1\)
Co-Ordinate system

88445 A line passing through \(P(4,2)\) cuts the coordinate axes at \(A\) and \(B\) respectively. If \(O\) is the origin, then the locus of the centre of the circum-circle of \(\triangle \mathrm{OAB}\) is

1 \(x^{-1}+y^{-1}=2\)
2 \(2 \mathrm{x}^{-1}+\mathrm{y}^{-1}=1\)
3 \(\mathrm{x}^{-1}+2 \mathrm{y}^{-1}=1\)
4 \(2 \mathrm{x}^{-1}+3 \mathrm{y}^{-1}=1\)