Locus and its Equation
Co-Ordinate system

88438 The locus of the point, which moves such that its distance from \((1,-2,2)\) is unity, will be

1 \(x^{2}+y^{2}+z^{2}-2 x+4 y-4 z+8=0\)
2 \(x^{2}+y^{2}+z^{2}-2 x-4 y-4 z+8=0\)
3 \(x^{2}+y^{2}+z^{2}+2 x+4 y-4 z+8=0\)
4 \(x^{2}+y^{2}+z^{2}-2 x+4 y+4 z+8=0\)
Co-Ordinate system

88439 A variable plane is at a constant distance \(P\) from the origin \(O\) and meets the axes at \(A, B\) and \(C\). The locus of the centroid of the tetrahedron \(\mathrm{OABC}\) is

1 \(\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{y}^{2}}+\frac{1}{\mathrm{z}^{2}}=\frac{1}{\mathrm{p}^{2}}\)
2 \(\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{y}^{2}}+\frac{1}{\mathrm{z}^{2}}=\frac{16}{\mathrm{p}^{2}}\)
3 \(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=16 \mathrm{p}^{2}\)
4 \(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=\mathrm{p}^{2}\)
Co-Ordinate system

88440 A line segment \(A B\) of length \(\lambda\) moves such that the points \(A\) and \(B\) remain on the periphery of a circle of radius \(\lambda\). Then the locus of the point, that divides the line segment \(A B\) in the ratio 2: 3 is a circle of radius

1 \(\frac{3}{5} \lambda\)
2 \(\frac{\sqrt{19}}{7} \lambda\)
3 \(\frac{2}{3} \lambda\)
4 \(\frac{\sqrt{19}}{5} \lambda\)
Co-Ordinate system

88441 A rod of length \(2 l\) slides with its ends on two perpendicular lines, then the locus of its midpoint is

1 \(\mathrm{x}^{2}+\mathrm{y}^{2}=l^{2}\)
2 \(\mathrm{x}^{2}-\mathrm{y}^{2}=l^{2}\)
3 \(2 \mathrm{x}^{2}+2 \mathrm{y}^{2}=l^{2}\)
4 \(2 x^{2}-2 y^{2}=l^{2}\)
Co-Ordinate system

88438 The locus of the point, which moves such that its distance from \((1,-2,2)\) is unity, will be

1 \(x^{2}+y^{2}+z^{2}-2 x+4 y-4 z+8=0\)
2 \(x^{2}+y^{2}+z^{2}-2 x-4 y-4 z+8=0\)
3 \(x^{2}+y^{2}+z^{2}+2 x+4 y-4 z+8=0\)
4 \(x^{2}+y^{2}+z^{2}-2 x+4 y+4 z+8=0\)
Co-Ordinate system

88439 A variable plane is at a constant distance \(P\) from the origin \(O\) and meets the axes at \(A, B\) and \(C\). The locus of the centroid of the tetrahedron \(\mathrm{OABC}\) is

1 \(\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{y}^{2}}+\frac{1}{\mathrm{z}^{2}}=\frac{1}{\mathrm{p}^{2}}\)
2 \(\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{y}^{2}}+\frac{1}{\mathrm{z}^{2}}=\frac{16}{\mathrm{p}^{2}}\)
3 \(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=16 \mathrm{p}^{2}\)
4 \(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=\mathrm{p}^{2}\)
Co-Ordinate system

88440 A line segment \(A B\) of length \(\lambda\) moves such that the points \(A\) and \(B\) remain on the periphery of a circle of radius \(\lambda\). Then the locus of the point, that divides the line segment \(A B\) in the ratio 2: 3 is a circle of radius

1 \(\frac{3}{5} \lambda\)
2 \(\frac{\sqrt{19}}{7} \lambda\)
3 \(\frac{2}{3} \lambda\)
4 \(\frac{\sqrt{19}}{5} \lambda\)
Co-Ordinate system

88441 A rod of length \(2 l\) slides with its ends on two perpendicular lines, then the locus of its midpoint is

1 \(\mathrm{x}^{2}+\mathrm{y}^{2}=l^{2}\)
2 \(\mathrm{x}^{2}-\mathrm{y}^{2}=l^{2}\)
3 \(2 \mathrm{x}^{2}+2 \mathrm{y}^{2}=l^{2}\)
4 \(2 x^{2}-2 y^{2}=l^{2}\)
Co-Ordinate system

88438 The locus of the point, which moves such that its distance from \((1,-2,2)\) is unity, will be

1 \(x^{2}+y^{2}+z^{2}-2 x+4 y-4 z+8=0\)
2 \(x^{2}+y^{2}+z^{2}-2 x-4 y-4 z+8=0\)
3 \(x^{2}+y^{2}+z^{2}+2 x+4 y-4 z+8=0\)
4 \(x^{2}+y^{2}+z^{2}-2 x+4 y+4 z+8=0\)
Co-Ordinate system

88439 A variable plane is at a constant distance \(P\) from the origin \(O\) and meets the axes at \(A, B\) and \(C\). The locus of the centroid of the tetrahedron \(\mathrm{OABC}\) is

1 \(\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{y}^{2}}+\frac{1}{\mathrm{z}^{2}}=\frac{1}{\mathrm{p}^{2}}\)
2 \(\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{y}^{2}}+\frac{1}{\mathrm{z}^{2}}=\frac{16}{\mathrm{p}^{2}}\)
3 \(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=16 \mathrm{p}^{2}\)
4 \(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=\mathrm{p}^{2}\)
Co-Ordinate system

88440 A line segment \(A B\) of length \(\lambda\) moves such that the points \(A\) and \(B\) remain on the periphery of a circle of radius \(\lambda\). Then the locus of the point, that divides the line segment \(A B\) in the ratio 2: 3 is a circle of radius

1 \(\frac{3}{5} \lambda\)
2 \(\frac{\sqrt{19}}{7} \lambda\)
3 \(\frac{2}{3} \lambda\)
4 \(\frac{\sqrt{19}}{5} \lambda\)
Co-Ordinate system

88441 A rod of length \(2 l\) slides with its ends on two perpendicular lines, then the locus of its midpoint is

1 \(\mathrm{x}^{2}+\mathrm{y}^{2}=l^{2}\)
2 \(\mathrm{x}^{2}-\mathrm{y}^{2}=l^{2}\)
3 \(2 \mathrm{x}^{2}+2 \mathrm{y}^{2}=l^{2}\)
4 \(2 x^{2}-2 y^{2}=l^{2}\)
Co-Ordinate system

88438 The locus of the point, which moves such that its distance from \((1,-2,2)\) is unity, will be

1 \(x^{2}+y^{2}+z^{2}-2 x+4 y-4 z+8=0\)
2 \(x^{2}+y^{2}+z^{2}-2 x-4 y-4 z+8=0\)
3 \(x^{2}+y^{2}+z^{2}+2 x+4 y-4 z+8=0\)
4 \(x^{2}+y^{2}+z^{2}-2 x+4 y+4 z+8=0\)
Co-Ordinate system

88439 A variable plane is at a constant distance \(P\) from the origin \(O\) and meets the axes at \(A, B\) and \(C\). The locus of the centroid of the tetrahedron \(\mathrm{OABC}\) is

1 \(\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{y}^{2}}+\frac{1}{\mathrm{z}^{2}}=\frac{1}{\mathrm{p}^{2}}\)
2 \(\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{y}^{2}}+\frac{1}{\mathrm{z}^{2}}=\frac{16}{\mathrm{p}^{2}}\)
3 \(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=16 \mathrm{p}^{2}\)
4 \(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=\mathrm{p}^{2}\)
Co-Ordinate system

88440 A line segment \(A B\) of length \(\lambda\) moves such that the points \(A\) and \(B\) remain on the periphery of a circle of radius \(\lambda\). Then the locus of the point, that divides the line segment \(A B\) in the ratio 2: 3 is a circle of radius

1 \(\frac{3}{5} \lambda\)
2 \(\frac{\sqrt{19}}{7} \lambda\)
3 \(\frac{2}{3} \lambda\)
4 \(\frac{\sqrt{19}}{5} \lambda\)
Co-Ordinate system

88441 A rod of length \(2 l\) slides with its ends on two perpendicular lines, then the locus of its midpoint is

1 \(\mathrm{x}^{2}+\mathrm{y}^{2}=l^{2}\)
2 \(\mathrm{x}^{2}-\mathrm{y}^{2}=l^{2}\)
3 \(2 \mathrm{x}^{2}+2 \mathrm{y}^{2}=l^{2}\)
4 \(2 x^{2}-2 y^{2}=l^{2}\)