Linear Combination of Vector
Vector Algebra

88194 If P(3,2,4),Q(9,8,10) and R(5,4,6) are collinear, then the ratio in which R divides PQ is

1 1:2
2 2:1
3 3:1
4 1:3
Vector Algebra

88196 For scalars λ,μ if the vector equation of a plane is
r=(23λμ)i^+(12λ+3μ)j^+(2+2λ+μ)k^
then its Cartesian equation is

1 8x5y7z+35=0
2 8x5y+7z35=0
3 8x+5y7z+35=0
4 8x+5y7z35=0
Vector Algebra

88197 If b,c are non collinear vectors, |c|0,a×(b×
c) +(a.b)b=(42βsinα)b+(β21)c and (c.c) a=c, then the scalars α and β are

1 α=π2+nπ3,nZ;β=1
2 α=π2+2nπ,nZ;β=1
3 α=π2+(2n+1)π2,nZ,β=1
4 α=(2n+1)π2,nZ,β=32
Vector Algebra

88194 If P(3,2,4),Q(9,8,10) and R(5,4,6) are collinear, then the ratio in which R divides PQ is

1 1:2
2 2:1
3 3:1
4 1:3
Vector Algebra

88195 The point if intersection of the lines
l1:r(t)=(I6j+2k)+t(i+2j+k)
l2:R(u)=(4j+k)+u(2i+j+2k) is 

1 (4,4,5)
2 (6,4,7)
3 (8,8,9)
4 (10,12,11)
Vector Algebra

88196 For scalars λ,μ if the vector equation of a plane is
r=(23λμ)i^+(12λ+3μ)j^+(2+2λ+μ)k^
then its Cartesian equation is

1 8x5y7z+35=0
2 8x5y+7z35=0
3 8x+5y7z+35=0
4 8x+5y7z35=0
Vector Algebra

88197 If b,c are non collinear vectors, |c|0,a×(b×
c) +(a.b)b=(42βsinα)b+(β21)c and (c.c) a=c, then the scalars α and β are

1 α=π2+nπ3,nZ;β=1
2 α=π2+2nπ,nZ;β=1
3 α=π2+(2n+1)π2,nZ,β=1
4 α=(2n+1)π2,nZ,β=32
Vector Algebra

88194 If P(3,2,4),Q(9,8,10) and R(5,4,6) are collinear, then the ratio in which R divides PQ is

1 1:2
2 2:1
3 3:1
4 1:3
Vector Algebra

88195 The point if intersection of the lines
l1:r(t)=(I6j+2k)+t(i+2j+k)
l2:R(u)=(4j+k)+u(2i+j+2k) is 

1 (4,4,5)
2 (6,4,7)
3 (8,8,9)
4 (10,12,11)
Vector Algebra

88196 For scalars λ,μ if the vector equation of a plane is
r=(23λμ)i^+(12λ+3μ)j^+(2+2λ+μ)k^
then its Cartesian equation is

1 8x5y7z+35=0
2 8x5y+7z35=0
3 8x+5y7z+35=0
4 8x+5y7z35=0
Vector Algebra

88197 If b,c are non collinear vectors, |c|0,a×(b×
c) +(a.b)b=(42βsinα)b+(β21)c and (c.c) a=c, then the scalars α and β are

1 α=π2+nπ3,nZ;β=1
2 α=π2+2nπ,nZ;β=1
3 α=π2+(2n+1)π2,nZ,β=1
4 α=(2n+1)π2,nZ,β=32
Vector Algebra

88194 If P(3,2,4),Q(9,8,10) and R(5,4,6) are collinear, then the ratio in which R divides PQ is

1 1:2
2 2:1
3 3:1
4 1:3
Vector Algebra

88195 The point if intersection of the lines
l1:r(t)=(I6j+2k)+t(i+2j+k)
l2:R(u)=(4j+k)+u(2i+j+2k) is 

1 (4,4,5)
2 (6,4,7)
3 (8,8,9)
4 (10,12,11)
Vector Algebra

88196 For scalars λ,μ if the vector equation of a plane is
r=(23λμ)i^+(12λ+3μ)j^+(2+2λ+μ)k^
then its Cartesian equation is

1 8x5y7z+35=0
2 8x5y+7z35=0
3 8x+5y7z+35=0
4 8x+5y7z35=0
Vector Algebra

88197 If b,c are non collinear vectors, |c|0,a×(b×
c) +(a.b)b=(42βsinα)b+(β21)c and (c.c) a=c, then the scalars α and β are

1 α=π2+nπ3,nZ;β=1
2 α=π2+2nπ,nZ;β=1
3 α=π2+(2n+1)π2,nZ,β=1
4 α=(2n+1)π2,nZ,β=32