88192 If the foot of the perpendicular from point (4, 3,8 ) on the line \(L_1 \Rightarrow \frac{x-a}{1}=\frac{y-2}{3}=\frac{z-b}{4}, l \neq 0\) is \((3,5,7)\), then the shortest distance between the line \(L_1\) and line \(L_2 \Rightarrow \frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}\) is equal to
88193
Three concurrent edges of a parallelepiped are given by
\(\mathbf{a}=\mathbf{2} \hat{\mathbf{i}}-\mathbf{3} \hat{\mathbf{i}}+\hat{\mathbf{k}},\)
\(\mathbf{b}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\mathbf{2} \hat{\mathbf{k}},\)
\(\mathbf{c}=\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}\)
and
The volume of the parallelepiped is
88192 If the foot of the perpendicular from point (4, 3,8 ) on the line \(L_1 \Rightarrow \frac{x-a}{1}=\frac{y-2}{3}=\frac{z-b}{4}, l \neq 0\) is \((3,5,7)\), then the shortest distance between the line \(L_1\) and line \(L_2 \Rightarrow \frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}\) is equal to
88193
Three concurrent edges of a parallelepiped are given by
\(\mathbf{a}=\mathbf{2} \hat{\mathbf{i}}-\mathbf{3} \hat{\mathbf{i}}+\hat{\mathbf{k}},\)
\(\mathbf{b}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\mathbf{2} \hat{\mathbf{k}},\)
\(\mathbf{c}=\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}\)
and
The volume of the parallelepiped is
88192 If the foot of the perpendicular from point (4, 3,8 ) on the line \(L_1 \Rightarrow \frac{x-a}{1}=\frac{y-2}{3}=\frac{z-b}{4}, l \neq 0\) is \((3,5,7)\), then the shortest distance between the line \(L_1\) and line \(L_2 \Rightarrow \frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}\) is equal to
88193
Three concurrent edges of a parallelepiped are given by
\(\mathbf{a}=\mathbf{2} \hat{\mathbf{i}}-\mathbf{3} \hat{\mathbf{i}}+\hat{\mathbf{k}},\)
\(\mathbf{b}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\mathbf{2} \hat{\mathbf{k}},\)
\(\mathbf{c}=\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}\)
and
The volume of the parallelepiped is
88192 If the foot of the perpendicular from point (4, 3,8 ) on the line \(L_1 \Rightarrow \frac{x-a}{1}=\frac{y-2}{3}=\frac{z-b}{4}, l \neq 0\) is \((3,5,7)\), then the shortest distance between the line \(L_1\) and line \(L_2 \Rightarrow \frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}\) is equal to
88193
Three concurrent edges of a parallelepiped are given by
\(\mathbf{a}=\mathbf{2} \hat{\mathbf{i}}-\mathbf{3} \hat{\mathbf{i}}+\hat{\mathbf{k}},\)
\(\mathbf{b}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\mathbf{2} \hat{\mathbf{k}},\)
\(\mathbf{c}=\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}\)
and
The volume of the parallelepiped is