Linear Combination of Vector
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

88190 Let \(\vec{a}=3 \hat{i}+2 \hat{j}+x \hat{k}\) and \(\vec{b}=\hat{i}-\hat{j}+\hat{k}\) for some real \(x\). Then \(|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=r\) is possible if

1 \(0\lt\mathrm{r} \leq \sqrt{\frac{3}{2}}\)
2 \(\sqrt{\frac{3}{2}}\lt\mathrm{r} \leq 3 \sqrt{\frac{3}{2}}\)
3 \(3 \sqrt{\frac{3}{2}}\lt\) r \(\lt5 \sqrt{\frac{3}{2}}\)
4 \(r \geq 5 \sqrt{\frac{3}{2}}\)
Vector Algebra

88191 Let \(\alpha=(\lambda-2) a+b\) and \(\beta=(4 \lambda-2) a+3 b\) be two given vectors where \(a\) and \(b\) are noncollinear. The value of \(\lambda\) for which vectors \(\alpha\) and \(\beta\) are collinear is

1 4
2 -3
3 3
4 -4
Vector Algebra

88192 If the foot of the perpendicular from point (4, 3,8 ) on the line \(L_1 \Rightarrow \frac{x-a}{1}=\frac{y-2}{3}=\frac{z-b}{4}, l \neq 0\) is \((3,5,7)\), then the shortest distance between the line \(L_1\) and line \(L_2 \Rightarrow \frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}\) is equal to

1 \(\frac{1}{2}\)
2 \(\frac{1}{\sqrt{6}}\)
3 \(\sqrt{\frac{2}{3}}\)
4 \(\frac{1}{\sqrt{3}}\)
Vector Algebra

88193 Three concurrent edges of a parallelepiped are given by
\(\mathbf{a}=\mathbf{2} \hat{\mathbf{i}}-\mathbf{3} \hat{\mathbf{i}}+\hat{\mathbf{k}},\)
\(\mathbf{b}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\mathbf{2} \hat{\mathbf{k}},\)
\(\mathbf{c}=\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}\)
and
The volume of the parallelepiped is

1 14 cu units
2 20 cu units
3 \(25 \mathrm{cu}\) units
4 \(60 \mathrm{cu}\) units
Vector Algebra

88190 Let \(\vec{a}=3 \hat{i}+2 \hat{j}+x \hat{k}\) and \(\vec{b}=\hat{i}-\hat{j}+\hat{k}\) for some real \(x\). Then \(|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=r\) is possible if

1 \(0\lt\mathrm{r} \leq \sqrt{\frac{3}{2}}\)
2 \(\sqrt{\frac{3}{2}}\lt\mathrm{r} \leq 3 \sqrt{\frac{3}{2}}\)
3 \(3 \sqrt{\frac{3}{2}}\lt\) r \(\lt5 \sqrt{\frac{3}{2}}\)
4 \(r \geq 5 \sqrt{\frac{3}{2}}\)
Vector Algebra

88191 Let \(\alpha=(\lambda-2) a+b\) and \(\beta=(4 \lambda-2) a+3 b\) be two given vectors where \(a\) and \(b\) are noncollinear. The value of \(\lambda\) for which vectors \(\alpha\) and \(\beta\) are collinear is

1 4
2 -3
3 3
4 -4
Vector Algebra

88192 If the foot of the perpendicular from point (4, 3,8 ) on the line \(L_1 \Rightarrow \frac{x-a}{1}=\frac{y-2}{3}=\frac{z-b}{4}, l \neq 0\) is \((3,5,7)\), then the shortest distance between the line \(L_1\) and line \(L_2 \Rightarrow \frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}\) is equal to

1 \(\frac{1}{2}\)
2 \(\frac{1}{\sqrt{6}}\)
3 \(\sqrt{\frac{2}{3}}\)
4 \(\frac{1}{\sqrt{3}}\)
Vector Algebra

88193 Three concurrent edges of a parallelepiped are given by
\(\mathbf{a}=\mathbf{2} \hat{\mathbf{i}}-\mathbf{3} \hat{\mathbf{i}}+\hat{\mathbf{k}},\)
\(\mathbf{b}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\mathbf{2} \hat{\mathbf{k}},\)
\(\mathbf{c}=\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}\)
and
The volume of the parallelepiped is

1 14 cu units
2 20 cu units
3 \(25 \mathrm{cu}\) units
4 \(60 \mathrm{cu}\) units
Vector Algebra

88190 Let \(\vec{a}=3 \hat{i}+2 \hat{j}+x \hat{k}\) and \(\vec{b}=\hat{i}-\hat{j}+\hat{k}\) for some real \(x\). Then \(|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=r\) is possible if

1 \(0\lt\mathrm{r} \leq \sqrt{\frac{3}{2}}\)
2 \(\sqrt{\frac{3}{2}}\lt\mathrm{r} \leq 3 \sqrt{\frac{3}{2}}\)
3 \(3 \sqrt{\frac{3}{2}}\lt\) r \(\lt5 \sqrt{\frac{3}{2}}\)
4 \(r \geq 5 \sqrt{\frac{3}{2}}\)
Vector Algebra

88191 Let \(\alpha=(\lambda-2) a+b\) and \(\beta=(4 \lambda-2) a+3 b\) be two given vectors where \(a\) and \(b\) are noncollinear. The value of \(\lambda\) for which vectors \(\alpha\) and \(\beta\) are collinear is

1 4
2 -3
3 3
4 -4
Vector Algebra

88192 If the foot of the perpendicular from point (4, 3,8 ) on the line \(L_1 \Rightarrow \frac{x-a}{1}=\frac{y-2}{3}=\frac{z-b}{4}, l \neq 0\) is \((3,5,7)\), then the shortest distance between the line \(L_1\) and line \(L_2 \Rightarrow \frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}\) is equal to

1 \(\frac{1}{2}\)
2 \(\frac{1}{\sqrt{6}}\)
3 \(\sqrt{\frac{2}{3}}\)
4 \(\frac{1}{\sqrt{3}}\)
Vector Algebra

88193 Three concurrent edges of a parallelepiped are given by
\(\mathbf{a}=\mathbf{2} \hat{\mathbf{i}}-\mathbf{3} \hat{\mathbf{i}}+\hat{\mathbf{k}},\)
\(\mathbf{b}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\mathbf{2} \hat{\mathbf{k}},\)
\(\mathbf{c}=\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}\)
and
The volume of the parallelepiped is

1 14 cu units
2 20 cu units
3 \(25 \mathrm{cu}\) units
4 \(60 \mathrm{cu}\) units
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

88190 Let \(\vec{a}=3 \hat{i}+2 \hat{j}+x \hat{k}\) and \(\vec{b}=\hat{i}-\hat{j}+\hat{k}\) for some real \(x\). Then \(|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=r\) is possible if

1 \(0\lt\mathrm{r} \leq \sqrt{\frac{3}{2}}\)
2 \(\sqrt{\frac{3}{2}}\lt\mathrm{r} \leq 3 \sqrt{\frac{3}{2}}\)
3 \(3 \sqrt{\frac{3}{2}}\lt\) r \(\lt5 \sqrt{\frac{3}{2}}\)
4 \(r \geq 5 \sqrt{\frac{3}{2}}\)
Vector Algebra

88191 Let \(\alpha=(\lambda-2) a+b\) and \(\beta=(4 \lambda-2) a+3 b\) be two given vectors where \(a\) and \(b\) are noncollinear. The value of \(\lambda\) for which vectors \(\alpha\) and \(\beta\) are collinear is

1 4
2 -3
3 3
4 -4
Vector Algebra

88192 If the foot of the perpendicular from point (4, 3,8 ) on the line \(L_1 \Rightarrow \frac{x-a}{1}=\frac{y-2}{3}=\frac{z-b}{4}, l \neq 0\) is \((3,5,7)\), then the shortest distance between the line \(L_1\) and line \(L_2 \Rightarrow \frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}\) is equal to

1 \(\frac{1}{2}\)
2 \(\frac{1}{\sqrt{6}}\)
3 \(\sqrt{\frac{2}{3}}\)
4 \(\frac{1}{\sqrt{3}}\)
Vector Algebra

88193 Three concurrent edges of a parallelepiped are given by
\(\mathbf{a}=\mathbf{2} \hat{\mathbf{i}}-\mathbf{3} \hat{\mathbf{i}}+\hat{\mathbf{k}},\)
\(\mathbf{b}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\mathbf{2} \hat{\mathbf{k}},\)
\(\mathbf{c}=\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}\)
and
The volume of the parallelepiped is

1 14 cu units
2 20 cu units
3 \(25 \mathrm{cu}\) units
4 \(60 \mathrm{cu}\) units