Linear Combination of Vector
Vector Algebra

88185 If \(a, b, c\) are non-zero, non-collinear vectors and \(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}\), then \(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\)

1 \(3 \vec{a}\)
2 0
3 \(3(\vec{a} \times \vec{b})\)
4 \(3(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})\)
Vector Algebra

88186 If the vectors \(p \hat{i}+\hat{j}+\hat{k}, \hat{i}+q \hat{j}+\hat{k}\) and \(\hat{i}+\hat{j}+r \hat{k}\) (where, \(\mathbf{p} \neq \mathrm{q} \neq \mathrm{r} \neq 1\) ) are coplanar, then the value of \(p q r-(p+q+r)\) is

1 -2
2 2
3 0
4 -1
Vector Algebra

88187 The sum of the distinct real values of \(\mu\) for which the vectors, \(\mu \hat{i}+\hat{j}+\hat{k}, \hat{i}+\mu \hat{j}+\hat{k}, \hat{i}+\hat{j}+\mu \hat{k}\) are coplanar, is

1 2
2 0
3 1
4 -1
Vector Algebra

88188 Let \(a=\hat{i}+2 \hat{j}+4 \hat{k}, b=\hat{i}+\lambda \hat{j}+4 \hat{k}\) and \(\mathbf{c}=\mathbf{2} \hat{\mathbf{i}}+\mathbf{4} \hat{\mathbf{j}}+\left(\lambda^2-1\right) \hat{\mathbf{k}}\) be coplanar vectors. Then, the non-zero vector \(\mathbf{a} \times \mathbf{c}\) is

1 \(-10 \hat{i}+5 \hat{j}\)
2 \(-10 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}\)
3 \(-14 \hat{i}-5 \hat{j}\)
4 \(-14 \hat{i}+5 \hat{j}\)
Vector Algebra

88189 Let the vectors \((2+a+b) \hat{i}+(a+2 b+c) \hat{j}-(b+c) \hat{k},\)
\((1+b) \hat{i}+2 b \hat{j}-b \hat{k} \text { and }(2+b) \hat{i}+2 b \hat{j}+(1-b) \hat{k},\)
\(\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbf{R}\) be coplanar.
Then, which of the following is true?

1 \(2 \mathrm{~b}=\mathrm{a}+\mathrm{c}\)
2 \(3 \mathrm{c}=\mathrm{a}+\mathrm{b}\)
3 \(a=b+2 c\)
4 \(2 \mathrm{a}=\mathrm{b}+\mathrm{c}\)
Vector Algebra

88185 If \(a, b, c\) are non-zero, non-collinear vectors and \(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}\), then \(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\)

1 \(3 \vec{a}\)
2 0
3 \(3(\vec{a} \times \vec{b})\)
4 \(3(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})\)
Vector Algebra

88186 If the vectors \(p \hat{i}+\hat{j}+\hat{k}, \hat{i}+q \hat{j}+\hat{k}\) and \(\hat{i}+\hat{j}+r \hat{k}\) (where, \(\mathbf{p} \neq \mathrm{q} \neq \mathrm{r} \neq 1\) ) are coplanar, then the value of \(p q r-(p+q+r)\) is

1 -2
2 2
3 0
4 -1
Vector Algebra

88187 The sum of the distinct real values of \(\mu\) for which the vectors, \(\mu \hat{i}+\hat{j}+\hat{k}, \hat{i}+\mu \hat{j}+\hat{k}, \hat{i}+\hat{j}+\mu \hat{k}\) are coplanar, is

1 2
2 0
3 1
4 -1
Vector Algebra

88188 Let \(a=\hat{i}+2 \hat{j}+4 \hat{k}, b=\hat{i}+\lambda \hat{j}+4 \hat{k}\) and \(\mathbf{c}=\mathbf{2} \hat{\mathbf{i}}+\mathbf{4} \hat{\mathbf{j}}+\left(\lambda^2-1\right) \hat{\mathbf{k}}\) be coplanar vectors. Then, the non-zero vector \(\mathbf{a} \times \mathbf{c}\) is

1 \(-10 \hat{i}+5 \hat{j}\)
2 \(-10 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}\)
3 \(-14 \hat{i}-5 \hat{j}\)
4 \(-14 \hat{i}+5 \hat{j}\)
Vector Algebra

88189 Let the vectors \((2+a+b) \hat{i}+(a+2 b+c) \hat{j}-(b+c) \hat{k},\)
\((1+b) \hat{i}+2 b \hat{j}-b \hat{k} \text { and }(2+b) \hat{i}+2 b \hat{j}+(1-b) \hat{k},\)
\(\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbf{R}\) be coplanar.
Then, which of the following is true?

1 \(2 \mathrm{~b}=\mathrm{a}+\mathrm{c}\)
2 \(3 \mathrm{c}=\mathrm{a}+\mathrm{b}\)
3 \(a=b+2 c\)
4 \(2 \mathrm{a}=\mathrm{b}+\mathrm{c}\)
Vector Algebra

88185 If \(a, b, c\) are non-zero, non-collinear vectors and \(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}\), then \(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\)

1 \(3 \vec{a}\)
2 0
3 \(3(\vec{a} \times \vec{b})\)
4 \(3(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})\)
Vector Algebra

88186 If the vectors \(p \hat{i}+\hat{j}+\hat{k}, \hat{i}+q \hat{j}+\hat{k}\) and \(\hat{i}+\hat{j}+r \hat{k}\) (where, \(\mathbf{p} \neq \mathrm{q} \neq \mathrm{r} \neq 1\) ) are coplanar, then the value of \(p q r-(p+q+r)\) is

1 -2
2 2
3 0
4 -1
Vector Algebra

88187 The sum of the distinct real values of \(\mu\) for which the vectors, \(\mu \hat{i}+\hat{j}+\hat{k}, \hat{i}+\mu \hat{j}+\hat{k}, \hat{i}+\hat{j}+\mu \hat{k}\) are coplanar, is

1 2
2 0
3 1
4 -1
Vector Algebra

88188 Let \(a=\hat{i}+2 \hat{j}+4 \hat{k}, b=\hat{i}+\lambda \hat{j}+4 \hat{k}\) and \(\mathbf{c}=\mathbf{2} \hat{\mathbf{i}}+\mathbf{4} \hat{\mathbf{j}}+\left(\lambda^2-1\right) \hat{\mathbf{k}}\) be coplanar vectors. Then, the non-zero vector \(\mathbf{a} \times \mathbf{c}\) is

1 \(-10 \hat{i}+5 \hat{j}\)
2 \(-10 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}\)
3 \(-14 \hat{i}-5 \hat{j}\)
4 \(-14 \hat{i}+5 \hat{j}\)
Vector Algebra

88189 Let the vectors \((2+a+b) \hat{i}+(a+2 b+c) \hat{j}-(b+c) \hat{k},\)
\((1+b) \hat{i}+2 b \hat{j}-b \hat{k} \text { and }(2+b) \hat{i}+2 b \hat{j}+(1-b) \hat{k},\)
\(\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbf{R}\) be coplanar.
Then, which of the following is true?

1 \(2 \mathrm{~b}=\mathrm{a}+\mathrm{c}\)
2 \(3 \mathrm{c}=\mathrm{a}+\mathrm{b}\)
3 \(a=b+2 c\)
4 \(2 \mathrm{a}=\mathrm{b}+\mathrm{c}\)
Vector Algebra

88185 If \(a, b, c\) are non-zero, non-collinear vectors and \(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}\), then \(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\)

1 \(3 \vec{a}\)
2 0
3 \(3(\vec{a} \times \vec{b})\)
4 \(3(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})\)
Vector Algebra

88186 If the vectors \(p \hat{i}+\hat{j}+\hat{k}, \hat{i}+q \hat{j}+\hat{k}\) and \(\hat{i}+\hat{j}+r \hat{k}\) (where, \(\mathbf{p} \neq \mathrm{q} \neq \mathrm{r} \neq 1\) ) are coplanar, then the value of \(p q r-(p+q+r)\) is

1 -2
2 2
3 0
4 -1
Vector Algebra

88187 The sum of the distinct real values of \(\mu\) for which the vectors, \(\mu \hat{i}+\hat{j}+\hat{k}, \hat{i}+\mu \hat{j}+\hat{k}, \hat{i}+\hat{j}+\mu \hat{k}\) are coplanar, is

1 2
2 0
3 1
4 -1
Vector Algebra

88188 Let \(a=\hat{i}+2 \hat{j}+4 \hat{k}, b=\hat{i}+\lambda \hat{j}+4 \hat{k}\) and \(\mathbf{c}=\mathbf{2} \hat{\mathbf{i}}+\mathbf{4} \hat{\mathbf{j}}+\left(\lambda^2-1\right) \hat{\mathbf{k}}\) be coplanar vectors. Then, the non-zero vector \(\mathbf{a} \times \mathbf{c}\) is

1 \(-10 \hat{i}+5 \hat{j}\)
2 \(-10 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}\)
3 \(-14 \hat{i}-5 \hat{j}\)
4 \(-14 \hat{i}+5 \hat{j}\)
Vector Algebra

88189 Let the vectors \((2+a+b) \hat{i}+(a+2 b+c) \hat{j}-(b+c) \hat{k},\)
\((1+b) \hat{i}+2 b \hat{j}-b \hat{k} \text { and }(2+b) \hat{i}+2 b \hat{j}+(1-b) \hat{k},\)
\(\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbf{R}\) be coplanar.
Then, which of the following is true?

1 \(2 \mathrm{~b}=\mathrm{a}+\mathrm{c}\)
2 \(3 \mathrm{c}=\mathrm{a}+\mathrm{b}\)
3 \(a=b+2 c\)
4 \(2 \mathrm{a}=\mathrm{b}+\mathrm{c}\)
Vector Algebra

88185 If \(a, b, c\) are non-zero, non-collinear vectors and \(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}\), then \(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\)

1 \(3 \vec{a}\)
2 0
3 \(3(\vec{a} \times \vec{b})\)
4 \(3(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})\)
Vector Algebra

88186 If the vectors \(p \hat{i}+\hat{j}+\hat{k}, \hat{i}+q \hat{j}+\hat{k}\) and \(\hat{i}+\hat{j}+r \hat{k}\) (where, \(\mathbf{p} \neq \mathrm{q} \neq \mathrm{r} \neq 1\) ) are coplanar, then the value of \(p q r-(p+q+r)\) is

1 -2
2 2
3 0
4 -1
Vector Algebra

88187 The sum of the distinct real values of \(\mu\) for which the vectors, \(\mu \hat{i}+\hat{j}+\hat{k}, \hat{i}+\mu \hat{j}+\hat{k}, \hat{i}+\hat{j}+\mu \hat{k}\) are coplanar, is

1 2
2 0
3 1
4 -1
Vector Algebra

88188 Let \(a=\hat{i}+2 \hat{j}+4 \hat{k}, b=\hat{i}+\lambda \hat{j}+4 \hat{k}\) and \(\mathbf{c}=\mathbf{2} \hat{\mathbf{i}}+\mathbf{4} \hat{\mathbf{j}}+\left(\lambda^2-1\right) \hat{\mathbf{k}}\) be coplanar vectors. Then, the non-zero vector \(\mathbf{a} \times \mathbf{c}\) is

1 \(-10 \hat{i}+5 \hat{j}\)
2 \(-10 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}\)
3 \(-14 \hat{i}-5 \hat{j}\)
4 \(-14 \hat{i}+5 \hat{j}\)
Vector Algebra

88189 Let the vectors \((2+a+b) \hat{i}+(a+2 b+c) \hat{j}-(b+c) \hat{k},\)
\((1+b) \hat{i}+2 b \hat{j}-b \hat{k} \text { and }(2+b) \hat{i}+2 b \hat{j}+(1-b) \hat{k},\)
\(\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbf{R}\) be coplanar.
Then, which of the following is true?

1 \(2 \mathrm{~b}=\mathrm{a}+\mathrm{c}\)
2 \(3 \mathrm{c}=\mathrm{a}+\mathrm{b}\)
3 \(a=b+2 c\)
4 \(2 \mathrm{a}=\mathrm{b}+\mathrm{c}\)