Linear Combination of Vector
Vector Algebra

88185 If a,b,c are non-zero, non-collinear vectors and a×b=b×c=c×a, then a+b+c=

1 3a
2 0
3 3(a×b)
4 3(b×c)
Vector Algebra

88187 The sum of the distinct real values of μ for which the vectors, μi^+j^+k^,i^+μj^+k^,i^+j^+μk^ are coplanar, is

1 2
2 0
3 1
4 -1
Vector Algebra

88188 Let a=i^+2j^+4k^,b=i^+λj^+4k^ and c=2i^+4j^+(λ21)k^ be coplanar vectors. Then, the non-zero vector a×c is

1 10i^+5j^
2 10i^5j^
3 14i^5j^
4 14i^+5j^
Vector Algebra

88189 Let the vectors (2+a+b)i^+(a+2b+c)j^(b+c)k^,
(1+b)i^+2bj^bk^ and (2+b)i^+2bj^+(1b)k^,
a,b,cR be coplanar.
Then, which of the following is true?

1 2 b=a+c
2 3c=a+b
3 a=b+2c
4 2a=b+c
Vector Algebra

88185 If a,b,c are non-zero, non-collinear vectors and a×b=b×c=c×a, then a+b+c=

1 3a
2 0
3 3(a×b)
4 3(b×c)
Vector Algebra

88186 If the vectors pi^+j^+k^,i^+qj^+k^ and i^+j^+rk^ (where, pqr1 ) are coplanar, then the value of pqr(p+q+r) is

1 -2
2 2
3 0
4 -1
Vector Algebra

88187 The sum of the distinct real values of μ for which the vectors, μi^+j^+k^,i^+μj^+k^,i^+j^+μk^ are coplanar, is

1 2
2 0
3 1
4 -1
Vector Algebra

88188 Let a=i^+2j^+4k^,b=i^+λj^+4k^ and c=2i^+4j^+(λ21)k^ be coplanar vectors. Then, the non-zero vector a×c is

1 10i^+5j^
2 10i^5j^
3 14i^5j^
4 14i^+5j^
Vector Algebra

88189 Let the vectors (2+a+b)i^+(a+2b+c)j^(b+c)k^,
(1+b)i^+2bj^bk^ and (2+b)i^+2bj^+(1b)k^,
a,b,cR be coplanar.
Then, which of the following is true?

1 2 b=a+c
2 3c=a+b
3 a=b+2c
4 2a=b+c
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

88185 If a,b,c are non-zero, non-collinear vectors and a×b=b×c=c×a, then a+b+c=

1 3a
2 0
3 3(a×b)
4 3(b×c)
Vector Algebra

88186 If the vectors pi^+j^+k^,i^+qj^+k^ and i^+j^+rk^ (where, pqr1 ) are coplanar, then the value of pqr(p+q+r) is

1 -2
2 2
3 0
4 -1
Vector Algebra

88187 The sum of the distinct real values of μ for which the vectors, μi^+j^+k^,i^+μj^+k^,i^+j^+μk^ are coplanar, is

1 2
2 0
3 1
4 -1
Vector Algebra

88188 Let a=i^+2j^+4k^,b=i^+λj^+4k^ and c=2i^+4j^+(λ21)k^ be coplanar vectors. Then, the non-zero vector a×c is

1 10i^+5j^
2 10i^5j^
3 14i^5j^
4 14i^+5j^
Vector Algebra

88189 Let the vectors (2+a+b)i^+(a+2b+c)j^(b+c)k^,
(1+b)i^+2bj^bk^ and (2+b)i^+2bj^+(1b)k^,
a,b,cR be coplanar.
Then, which of the following is true?

1 2 b=a+c
2 3c=a+b
3 a=b+2c
4 2a=b+c
Vector Algebra

88185 If a,b,c are non-zero, non-collinear vectors and a×b=b×c=c×a, then a+b+c=

1 3a
2 0
3 3(a×b)
4 3(b×c)
Vector Algebra

88186 If the vectors pi^+j^+k^,i^+qj^+k^ and i^+j^+rk^ (where, pqr1 ) are coplanar, then the value of pqr(p+q+r) is

1 -2
2 2
3 0
4 -1
Vector Algebra

88187 The sum of the distinct real values of μ for which the vectors, μi^+j^+k^,i^+μj^+k^,i^+j^+μk^ are coplanar, is

1 2
2 0
3 1
4 -1
Vector Algebra

88188 Let a=i^+2j^+4k^,b=i^+λj^+4k^ and c=2i^+4j^+(λ21)k^ be coplanar vectors. Then, the non-zero vector a×c is

1 10i^+5j^
2 10i^5j^
3 14i^5j^
4 14i^+5j^
Vector Algebra

88189 Let the vectors (2+a+b)i^+(a+2b+c)j^(b+c)k^,
(1+b)i^+2bj^bk^ and (2+b)i^+2bj^+(1b)k^,
a,b,cR be coplanar.
Then, which of the following is true?

1 2 b=a+c
2 3c=a+b
3 a=b+2c
4 2a=b+c
Vector Algebra

88185 If a,b,c are non-zero, non-collinear vectors and a×b=b×c=c×a, then a+b+c=

1 3a
2 0
3 3(a×b)
4 3(b×c)
Vector Algebra

88186 If the vectors pi^+j^+k^,i^+qj^+k^ and i^+j^+rk^ (where, pqr1 ) are coplanar, then the value of pqr(p+q+r) is

1 -2
2 2
3 0
4 -1
Vector Algebra

88187 The sum of the distinct real values of μ for which the vectors, μi^+j^+k^,i^+μj^+k^,i^+j^+μk^ are coplanar, is

1 2
2 0
3 1
4 -1
Vector Algebra

88188 Let a=i^+2j^+4k^,b=i^+λj^+4k^ and c=2i^+4j^+(λ21)k^ be coplanar vectors. Then, the non-zero vector a×c is

1 10i^+5j^
2 10i^5j^
3 14i^5j^
4 14i^+5j^
Vector Algebra

88189 Let the vectors (2+a+b)i^+(a+2b+c)j^(b+c)k^,
(1+b)i^+2bj^bk^ and (2+b)i^+2bj^+(1b)k^,
a,b,cR be coplanar.
Then, which of the following is true?

1 2 b=a+c
2 3c=a+b
3 a=b+2c
4 2a=b+c