88185 If a,b,c are non-zero, non-collinear vectors and a→×b→=b→×c→=c→×a→, then a→+b→+c→=
(B) : Given, a, b, c are non-zero, non-collinear vectors and a→×b→=b→×c→=c→×a→Let,a→+b→+c→=ka→×(a→+b→+c→)=k×a→a→×a→+a→×b→+a→×c→=k×a→0+a→×b→−c→×a→=k×a→a→×b→−a→×b→=k×a→0=k×a→k=0∴a→+b→+c→=0
88186 If the vectors pi^+j^+k^,i^+qj^+k^ and i^+j^+rk^ (where, p≠q≠r≠1 ) are coplanar, then the value of pqr−(p+q+r) is
(A) : Given,a,b,c are coplanar and p≠q≠r≠1a=pi^+j^+k^b=i^+qj^+k^c=i^+j^+rk^Since, a,b and c are coplanar∴[abc]=0|p111q111r|=0p(qr−1)−1(r−1)+1(1−q)=0pqr−p−r+1+1−q=0pqr−(p+q+r)+2=0pqr−(p+q+r)=−2
88187 The sum of the distinct real values of μ for which the vectors, μi^+j^+k^,i^+μj^+k^,i^+j^+μk^ are coplanar, is
(D) : Given,Three coplanar vectorsa→=μi^+j^+k^b→=i^+μj^+k^c→=i^+j^+μk^[a→b→c→]=0|μ111μ111μ|=0μ(μ2−1)−1(μ−1)+(1−μ)=0(μ−1){μ(μ+1)−1+(−1)}=0(μ−1){μ2+μ−2}=0(μ−1)(μ−1)(μ+2)=0μ=1,1,−2So, district real values of μ are 1 and -2Therefore, their sum =−1
88188 Let a=i^+2j^+4k^,b=i^+λj^+4k^ and c=2i^+4j^+(λ2−1)k^ be coplanar vectors. Then, the non-zero vector a×c is
(A) : Given,a→=i^+2j^+4k^b→=i^+λj^+4k^c→=2i^+4j^+(λ2−1)k^Since, a→,b→ and c→ are coplanar,∴|1241λ424(λ2−1)|=0(λ(λ2−1)−16)−2(λ2−1−8)+4(4−2λ)=0(λ3−λ−16)−2λ2+18+16−8λ=0λ3−2λ2−9λ+18=0(λ−2)(λ−3)(λ+3)=0λ=2,3,−3 So, λ=2( as a→,11c→ for λ=±3)a→×c→=|i^j^k^124243|=i^(6−16)−j^(3−8)+k^(4−4)=−10i^+5j^
88189 Let the vectors (2+a+b)i^+(a+2b+c)j^−(b+c)k^,(1+b)i^+2bj^−bk^ and (2+b)i^+2bj^+(1−b)k^,a,b,c∈R be coplanar.Then, which of the following is true?
(A) : Given,p→=(2+a+b)i^+(a+2b+c)j^−(b+c)k^q→=(1+b)i^+2bj^−bk^r→=(2+b)i^+2bj^+(1−b)k^p→,q→ and r→ coplanar, |(2+a+b)(a+2b+c)−(b+c)(1+b)2b−b(2+b)2b(1−b)|=0Now,R3→R3−R2,R1→R1−R2So,[a+1a+c−cb+12 b−b101]=0(a+1)2 b−(a+c){b+1+b}−c{−2 b}=0(a+1)2 b−(a+c)(2 b+1)+2bc=02 b−a−c=02 b=a+c