Linear Combination of Vector
Vector Algebra

88194 If \(P(3,2,-4), Q(9,8,-10)\) and \(R(5,4,-6)\) are collinear, then the ratio in which \(R\) divides \(P Q\) is

1 \(1: 2\)
2 \(2: 1\)
3 \(3: 1\)
4 \(1: 3\)
Vector Algebra

88195 The point if intersection of the lines
\(l_1: \mathbf{r}(\mathbf{t})=(\mathbf{I}-6 \mathbf{j}+\mathbf{2 k})+\mathbf{t}(\mathbf{i}+\mathbf{2} \mathbf{j}+\mathbf{k})\)
\(l_2: \mathbf{R}(\mathbf{u})=(\mathbf{4} \mathbf{j}+\mathbf{k})+\mathbf{u}(2 \mathbf{i}+\mathbf{j}+\mathbf{2 k}) \text { is }\)

1 \((4,4,5)\)
2 \((6,4,7)\)
3 \((8,8,9)\)
4 \((10,12,11)\)
Vector Algebra

88196 For scalars \(\lambda, \mu\) if the vector equation of a plane is
\(\mathbf{r}=(2-3 \lambda-\mu) \hat{\mathbf{i}}+(1-2 \lambda+3 \mu) \hat{\mathbf{j}}+(-2+2 \lambda+\mu) \hat{\mathbf{k}} \text {, }\)
then its Cartesian equation is

1 \(8 x-5 y-7 z+35=0\)
2 \(8 x-5 y+7 z-35=0\)
3 \(8 x+5 y-7 z+35=0\)
4 \(8 x+5 y-7 z-35=0\)
Vector Algebra

88197 If \(b, c\) are non collinear vectors, \(|c| \neq 0, a \times(b \times\)
c) \(+(\mathbf{a} . b) b=(4-2 \beta-\sin \alpha) b+\left(\beta^2-1\right) c\) and (c.c) \(\mathrm{a}=\mathrm{c}\), then the scalars \(\alpha\) and \(\beta\) are

1 \(\alpha=\frac{\pi}{2}+\frac{\mathrm{n} \pi}{3}, \mathrm{n} \in \mathrm{Z} ; \beta=1\)
2 \(\alpha=\frac{\pi}{2}+2 \mathrm{n} \pi, \mathrm{n} \in \mathrm{Z} ; \beta=1\)
3 \(\alpha=\frac{\pi}{2}+(2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in Z, \beta=1\)
4 \(\alpha=(2 n+1) \frac{\pi}{2}, n \in Z, \beta=\frac{3}{2}\)
Vector Algebra

88194 If \(P(3,2,-4), Q(9,8,-10)\) and \(R(5,4,-6)\) are collinear, then the ratio in which \(R\) divides \(P Q\) is

1 \(1: 2\)
2 \(2: 1\)
3 \(3: 1\)
4 \(1: 3\)
Vector Algebra

88195 The point if intersection of the lines
\(l_1: \mathbf{r}(\mathbf{t})=(\mathbf{I}-6 \mathbf{j}+\mathbf{2 k})+\mathbf{t}(\mathbf{i}+\mathbf{2} \mathbf{j}+\mathbf{k})\)
\(l_2: \mathbf{R}(\mathbf{u})=(\mathbf{4} \mathbf{j}+\mathbf{k})+\mathbf{u}(2 \mathbf{i}+\mathbf{j}+\mathbf{2 k}) \text { is }\)

1 \((4,4,5)\)
2 \((6,4,7)\)
3 \((8,8,9)\)
4 \((10,12,11)\)
Vector Algebra

88196 For scalars \(\lambda, \mu\) if the vector equation of a plane is
\(\mathbf{r}=(2-3 \lambda-\mu) \hat{\mathbf{i}}+(1-2 \lambda+3 \mu) \hat{\mathbf{j}}+(-2+2 \lambda+\mu) \hat{\mathbf{k}} \text {, }\)
then its Cartesian equation is

1 \(8 x-5 y-7 z+35=0\)
2 \(8 x-5 y+7 z-35=0\)
3 \(8 x+5 y-7 z+35=0\)
4 \(8 x+5 y-7 z-35=0\)
Vector Algebra

88197 If \(b, c\) are non collinear vectors, \(|c| \neq 0, a \times(b \times\)
c) \(+(\mathbf{a} . b) b=(4-2 \beta-\sin \alpha) b+\left(\beta^2-1\right) c\) and (c.c) \(\mathrm{a}=\mathrm{c}\), then the scalars \(\alpha\) and \(\beta\) are

1 \(\alpha=\frac{\pi}{2}+\frac{\mathrm{n} \pi}{3}, \mathrm{n} \in \mathrm{Z} ; \beta=1\)
2 \(\alpha=\frac{\pi}{2}+2 \mathrm{n} \pi, \mathrm{n} \in \mathrm{Z} ; \beta=1\)
3 \(\alpha=\frac{\pi}{2}+(2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in Z, \beta=1\)
4 \(\alpha=(2 n+1) \frac{\pi}{2}, n \in Z, \beta=\frac{3}{2}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

88194 If \(P(3,2,-4), Q(9,8,-10)\) and \(R(5,4,-6)\) are collinear, then the ratio in which \(R\) divides \(P Q\) is

1 \(1: 2\)
2 \(2: 1\)
3 \(3: 1\)
4 \(1: 3\)
Vector Algebra

88195 The point if intersection of the lines
\(l_1: \mathbf{r}(\mathbf{t})=(\mathbf{I}-6 \mathbf{j}+\mathbf{2 k})+\mathbf{t}(\mathbf{i}+\mathbf{2} \mathbf{j}+\mathbf{k})\)
\(l_2: \mathbf{R}(\mathbf{u})=(\mathbf{4} \mathbf{j}+\mathbf{k})+\mathbf{u}(2 \mathbf{i}+\mathbf{j}+\mathbf{2 k}) \text { is }\)

1 \((4,4,5)\)
2 \((6,4,7)\)
3 \((8,8,9)\)
4 \((10,12,11)\)
Vector Algebra

88196 For scalars \(\lambda, \mu\) if the vector equation of a plane is
\(\mathbf{r}=(2-3 \lambda-\mu) \hat{\mathbf{i}}+(1-2 \lambda+3 \mu) \hat{\mathbf{j}}+(-2+2 \lambda+\mu) \hat{\mathbf{k}} \text {, }\)
then its Cartesian equation is

1 \(8 x-5 y-7 z+35=0\)
2 \(8 x-5 y+7 z-35=0\)
3 \(8 x+5 y-7 z+35=0\)
4 \(8 x+5 y-7 z-35=0\)
Vector Algebra

88197 If \(b, c\) are non collinear vectors, \(|c| \neq 0, a \times(b \times\)
c) \(+(\mathbf{a} . b) b=(4-2 \beta-\sin \alpha) b+\left(\beta^2-1\right) c\) and (c.c) \(\mathrm{a}=\mathrm{c}\), then the scalars \(\alpha\) and \(\beta\) are

1 \(\alpha=\frac{\pi}{2}+\frac{\mathrm{n} \pi}{3}, \mathrm{n} \in \mathrm{Z} ; \beta=1\)
2 \(\alpha=\frac{\pi}{2}+2 \mathrm{n} \pi, \mathrm{n} \in \mathrm{Z} ; \beta=1\)
3 \(\alpha=\frac{\pi}{2}+(2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in Z, \beta=1\)
4 \(\alpha=(2 n+1) \frac{\pi}{2}, n \in Z, \beta=\frac{3}{2}\)
Vector Algebra

88194 If \(P(3,2,-4), Q(9,8,-10)\) and \(R(5,4,-6)\) are collinear, then the ratio in which \(R\) divides \(P Q\) is

1 \(1: 2\)
2 \(2: 1\)
3 \(3: 1\)
4 \(1: 3\)
Vector Algebra

88195 The point if intersection of the lines
\(l_1: \mathbf{r}(\mathbf{t})=(\mathbf{I}-6 \mathbf{j}+\mathbf{2 k})+\mathbf{t}(\mathbf{i}+\mathbf{2} \mathbf{j}+\mathbf{k})\)
\(l_2: \mathbf{R}(\mathbf{u})=(\mathbf{4} \mathbf{j}+\mathbf{k})+\mathbf{u}(2 \mathbf{i}+\mathbf{j}+\mathbf{2 k}) \text { is }\)

1 \((4,4,5)\)
2 \((6,4,7)\)
3 \((8,8,9)\)
4 \((10,12,11)\)
Vector Algebra

88196 For scalars \(\lambda, \mu\) if the vector equation of a plane is
\(\mathbf{r}=(2-3 \lambda-\mu) \hat{\mathbf{i}}+(1-2 \lambda+3 \mu) \hat{\mathbf{j}}+(-2+2 \lambda+\mu) \hat{\mathbf{k}} \text {, }\)
then its Cartesian equation is

1 \(8 x-5 y-7 z+35=0\)
2 \(8 x-5 y+7 z-35=0\)
3 \(8 x+5 y-7 z+35=0\)
4 \(8 x+5 y-7 z-35=0\)
Vector Algebra

88197 If \(b, c\) are non collinear vectors, \(|c| \neq 0, a \times(b \times\)
c) \(+(\mathbf{a} . b) b=(4-2 \beta-\sin \alpha) b+\left(\beta^2-1\right) c\) and (c.c) \(\mathrm{a}=\mathrm{c}\), then the scalars \(\alpha\) and \(\beta\) are

1 \(\alpha=\frac{\pi}{2}+\frac{\mathrm{n} \pi}{3}, \mathrm{n} \in \mathrm{Z} ; \beta=1\)
2 \(\alpha=\frac{\pi}{2}+2 \mathrm{n} \pi, \mathrm{n} \in \mathrm{Z} ; \beta=1\)
3 \(\alpha=\frac{\pi}{2}+(2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in Z, \beta=1\)
4 \(\alpha=(2 n+1) \frac{\pi}{2}, n \in Z, \beta=\frac{3}{2}\)