Scalar (dot) Product of Vector
Vector Algebra

87984 A vector of magnitude 5 and perpendicular to \((\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}})\) and \((2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-3 \hat{\mathbf{k}})\) is :

1 \(\frac{5 \sqrt{3}}{3}(\hat{i}+\hat{j}+\hat{k})\)
2 \(\frac{5 \sqrt{3}}{3}(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})\)
3 \(\frac{5 \sqrt{3}}{3}(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})\)
4 \(\frac{5 \sqrt{3}}{3}(-\hat{i}+\hat{j}+\hat{k})\)
Vector Algebra

87985 If vectors \(2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}\) and \(3 \hat{i}+a \hat{j}+5 \hat{k}\) are coplanar, then the value of \(a\) is

1 2
2 -2
3 -1
4 -4
Vector Algebra

87986 The unit vector perpendicular to the vectors \(6 \hat{i}+2 \hat{j}+3 \hat{k}\) and \(3 \hat{i}-6 \hat{j}-2 \hat{k}\) is-

1 \(\frac{2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}}{7}\)
2 \(\frac{2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}}{7}\)
3 \(\frac{2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}}{7}\)
4 \(\frac{2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}}{7}\)
Vector Algebra

87987 If \(a . b=a . c\) and \(a \times b=a \times c\), then correct statement is

1 \(a \|(b-c)\)
2 \(\mathrm{a} \perp(\mathrm{b}-\mathrm{c})\)
3 \(\mathrm{a}=0\) or \(\mathrm{b}=\mathrm{c}\)
4 None of these
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

87984 A vector of magnitude 5 and perpendicular to \((\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}})\) and \((2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-3 \hat{\mathbf{k}})\) is :

1 \(\frac{5 \sqrt{3}}{3}(\hat{i}+\hat{j}+\hat{k})\)
2 \(\frac{5 \sqrt{3}}{3}(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})\)
3 \(\frac{5 \sqrt{3}}{3}(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})\)
4 \(\frac{5 \sqrt{3}}{3}(-\hat{i}+\hat{j}+\hat{k})\)
Vector Algebra

87985 If vectors \(2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}\) and \(3 \hat{i}+a \hat{j}+5 \hat{k}\) are coplanar, then the value of \(a\) is

1 2
2 -2
3 -1
4 -4
Vector Algebra

87986 The unit vector perpendicular to the vectors \(6 \hat{i}+2 \hat{j}+3 \hat{k}\) and \(3 \hat{i}-6 \hat{j}-2 \hat{k}\) is-

1 \(\frac{2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}}{7}\)
2 \(\frac{2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}}{7}\)
3 \(\frac{2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}}{7}\)
4 \(\frac{2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}}{7}\)
Vector Algebra

87987 If \(a . b=a . c\) and \(a \times b=a \times c\), then correct statement is

1 \(a \|(b-c)\)
2 \(\mathrm{a} \perp(\mathrm{b}-\mathrm{c})\)
3 \(\mathrm{a}=0\) or \(\mathrm{b}=\mathrm{c}\)
4 None of these
Vector Algebra

87984 A vector of magnitude 5 and perpendicular to \((\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}})\) and \((2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-3 \hat{\mathbf{k}})\) is :

1 \(\frac{5 \sqrt{3}}{3}(\hat{i}+\hat{j}+\hat{k})\)
2 \(\frac{5 \sqrt{3}}{3}(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})\)
3 \(\frac{5 \sqrt{3}}{3}(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})\)
4 \(\frac{5 \sqrt{3}}{3}(-\hat{i}+\hat{j}+\hat{k})\)
Vector Algebra

87985 If vectors \(2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}\) and \(3 \hat{i}+a \hat{j}+5 \hat{k}\) are coplanar, then the value of \(a\) is

1 2
2 -2
3 -1
4 -4
Vector Algebra

87986 The unit vector perpendicular to the vectors \(6 \hat{i}+2 \hat{j}+3 \hat{k}\) and \(3 \hat{i}-6 \hat{j}-2 \hat{k}\) is-

1 \(\frac{2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}}{7}\)
2 \(\frac{2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}}{7}\)
3 \(\frac{2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}}{7}\)
4 \(\frac{2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}}{7}\)
Vector Algebra

87987 If \(a . b=a . c\) and \(a \times b=a \times c\), then correct statement is

1 \(a \|(b-c)\)
2 \(\mathrm{a} \perp(\mathrm{b}-\mathrm{c})\)
3 \(\mathrm{a}=0\) or \(\mathrm{b}=\mathrm{c}\)
4 None of these
Vector Algebra

87984 A vector of magnitude 5 and perpendicular to \((\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}})\) and \((2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-3 \hat{\mathbf{k}})\) is :

1 \(\frac{5 \sqrt{3}}{3}(\hat{i}+\hat{j}+\hat{k})\)
2 \(\frac{5 \sqrt{3}}{3}(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})\)
3 \(\frac{5 \sqrt{3}}{3}(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})\)
4 \(\frac{5 \sqrt{3}}{3}(-\hat{i}+\hat{j}+\hat{k})\)
Vector Algebra

87985 If vectors \(2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}\) and \(3 \hat{i}+a \hat{j}+5 \hat{k}\) are coplanar, then the value of \(a\) is

1 2
2 -2
3 -1
4 -4
Vector Algebra

87986 The unit vector perpendicular to the vectors \(6 \hat{i}+2 \hat{j}+3 \hat{k}\) and \(3 \hat{i}-6 \hat{j}-2 \hat{k}\) is-

1 \(\frac{2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}}{7}\)
2 \(\frac{2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}}{7}\)
3 \(\frac{2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}}{7}\)
4 \(\frac{2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}}{7}\)
Vector Algebra

87987 If \(a . b=a . c\) and \(a \times b=a \times c\), then correct statement is

1 \(a \|(b-c)\)
2 \(\mathrm{a} \perp(\mathrm{b}-\mathrm{c})\)
3 \(\mathrm{a}=0\) or \(\mathrm{b}=\mathrm{c}\)
4 None of these