Scalar (dot) Product of Vector
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

87988 Two vectors \(\vec{A}\) and \(\vec{B}\) are such that \(|\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}|=|\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}|\). The angle between the two vectors will be-

1 \(60^8\)
2 \(90^{\circ}\)
3 \(180^{\circ}\)
4 \(0^0\)
Vector Algebra

87989 If \((\vec{a} \times \vec{b})^2+(\vec{a} \cdot \vec{b})^2=676\) and \(|\vec{b}|=2\) then \(|\vec{a}|\) is equal to

1 13
2 26
3 39
4 None of these
Vector Algebra

88004 If \(|\vec{a}|=5,|\vec{b}|=13\) and \(|\vec{a} \times \vec{b}|=25\), then find \(\overrightarrow{\mathbf{a} . \vec{b}}\)

1 \(\pm 10\)
2 \(\pm 40\)
3 \(\pm 60\)
4 \(\pm 25\)
Vector Algebra

87990 Which one of the following is the unit vector perpendicular to both \(\overrightarrow{\mathbf{a}}=-\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\) ?

1 \(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}\)
2 \(\hat{\mathrm{k}}\)
3 \(\frac{\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{2}}\)
4 \(\frac{\hat{\mathrm{i}}-\hat{\mathrm{j}}}{\sqrt{2}}\)
Vector Algebra

87988 Two vectors \(\vec{A}\) and \(\vec{B}\) are such that \(|\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}|=|\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}|\). The angle between the two vectors will be-

1 \(60^8\)
2 \(90^{\circ}\)
3 \(180^{\circ}\)
4 \(0^0\)
Vector Algebra

87989 If \((\vec{a} \times \vec{b})^2+(\vec{a} \cdot \vec{b})^2=676\) and \(|\vec{b}|=2\) then \(|\vec{a}|\) is equal to

1 13
2 26
3 39
4 None of these
Vector Algebra

88004 If \(|\vec{a}|=5,|\vec{b}|=13\) and \(|\vec{a} \times \vec{b}|=25\), then find \(\overrightarrow{\mathbf{a} . \vec{b}}\)

1 \(\pm 10\)
2 \(\pm 40\)
3 \(\pm 60\)
4 \(\pm 25\)
Vector Algebra

87990 Which one of the following is the unit vector perpendicular to both \(\overrightarrow{\mathbf{a}}=-\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\) ?

1 \(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}\)
2 \(\hat{\mathrm{k}}\)
3 \(\frac{\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{2}}\)
4 \(\frac{\hat{\mathrm{i}}-\hat{\mathrm{j}}}{\sqrt{2}}\)
Vector Algebra

87988 Two vectors \(\vec{A}\) and \(\vec{B}\) are such that \(|\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}|=|\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}|\). The angle between the two vectors will be-

1 \(60^8\)
2 \(90^{\circ}\)
3 \(180^{\circ}\)
4 \(0^0\)
Vector Algebra

87989 If \((\vec{a} \times \vec{b})^2+(\vec{a} \cdot \vec{b})^2=676\) and \(|\vec{b}|=2\) then \(|\vec{a}|\) is equal to

1 13
2 26
3 39
4 None of these
Vector Algebra

88004 If \(|\vec{a}|=5,|\vec{b}|=13\) and \(|\vec{a} \times \vec{b}|=25\), then find \(\overrightarrow{\mathbf{a} . \vec{b}}\)

1 \(\pm 10\)
2 \(\pm 40\)
3 \(\pm 60\)
4 \(\pm 25\)
Vector Algebra

87990 Which one of the following is the unit vector perpendicular to both \(\overrightarrow{\mathbf{a}}=-\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\) ?

1 \(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}\)
2 \(\hat{\mathrm{k}}\)
3 \(\frac{\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{2}}\)
4 \(\frac{\hat{\mathrm{i}}-\hat{\mathrm{j}}}{\sqrt{2}}\)
Vector Algebra

87988 Two vectors \(\vec{A}\) and \(\vec{B}\) are such that \(|\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}|=|\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}|\). The angle between the two vectors will be-

1 \(60^8\)
2 \(90^{\circ}\)
3 \(180^{\circ}\)
4 \(0^0\)
Vector Algebra

87989 If \((\vec{a} \times \vec{b})^2+(\vec{a} \cdot \vec{b})^2=676\) and \(|\vec{b}|=2\) then \(|\vec{a}|\) is equal to

1 13
2 26
3 39
4 None of these
Vector Algebra

88004 If \(|\vec{a}|=5,|\vec{b}|=13\) and \(|\vec{a} \times \vec{b}|=25\), then find \(\overrightarrow{\mathbf{a} . \vec{b}}\)

1 \(\pm 10\)
2 \(\pm 40\)
3 \(\pm 60\)
4 \(\pm 25\)
Vector Algebra

87990 Which one of the following is the unit vector perpendicular to both \(\overrightarrow{\mathbf{a}}=-\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\) ?

1 \(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}\)
2 \(\hat{\mathrm{k}}\)
3 \(\frac{\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{2}}\)
4 \(\frac{\hat{\mathrm{i}}-\hat{\mathrm{j}}}{\sqrt{2}}\)