Scalar (dot) Product of Vector
Vector Algebra

87991 If \(\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{i}+\hat{k}\) are the position vectors of the vertices of a triangle \(A B C\) taken in order, then \(\angle \mathrm{A}\) is equal to

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{5}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{3}\)
Vector Algebra

87992 Let \(a, b\) and \(c\) be three vectors satisfying \(a \times b\) \(=(a \times c),|a|=|c|=1,|b|=4\) and \(|b \times c|=\sqrt{15}\). If \(b-2 c=\lambda a\), then \(\lambda\) equals

1 1
2 -1
3 2
4 -4
Vector Algebra

87993 If \(|\vec{a}|=3,|\vec{b}|=4\), then a value of \(\lambda\), for which \(\vec{a}+\lambda \vec{b}\) is perpendicular to \(\vec{a}-\lambda \vec{b}\)

1 \(\frac{9}{16}\)
2 \(\frac{3}{4}\)
3 \(\frac{3}{2}\)
4 \(\frac{3}{2}\)
Vector Algebra

87994 If \(\vec{a} \cdot \vec{b}=0\) and \(\vec{a}+\vec{b}\) makes an angle \(60^{\circ}\) with \(\vec{a}\) then

1 \(|\overrightarrow{\mathrm{a}}|=2|\overrightarrow{\mathrm{b}}|\)
2 \(2|\vec{a}|=|\vec{b}|\)
3 \(|\vec{a}|=\sqrt{3}|\vec{b}|\)
4 \(\sqrt{3}|\vec{a}|=|\vec{b}|\)
Vector Algebra

87995 If \(|\vec{a}|=4,|\vec{b}|=2,|\vec{c}|=6\) and each of the angles between the vectors is \(60^{\circ}\), then \(|\vec{a}|+|\vec{b}|+|\vec{c}|=\)

1 10
2 \(\sqrt{56}\)
3 \(\sqrt{44}\)
4 5
Vector Algebra

87991 If \(\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{i}+\hat{k}\) are the position vectors of the vertices of a triangle \(A B C\) taken in order, then \(\angle \mathrm{A}\) is equal to

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{5}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{3}\)
Vector Algebra

87992 Let \(a, b\) and \(c\) be three vectors satisfying \(a \times b\) \(=(a \times c),|a|=|c|=1,|b|=4\) and \(|b \times c|=\sqrt{15}\). If \(b-2 c=\lambda a\), then \(\lambda\) equals

1 1
2 -1
3 2
4 -4
Vector Algebra

87993 If \(|\vec{a}|=3,|\vec{b}|=4\), then a value of \(\lambda\), for which \(\vec{a}+\lambda \vec{b}\) is perpendicular to \(\vec{a}-\lambda \vec{b}\)

1 \(\frac{9}{16}\)
2 \(\frac{3}{4}\)
3 \(\frac{3}{2}\)
4 \(\frac{3}{2}\)
Vector Algebra

87994 If \(\vec{a} \cdot \vec{b}=0\) and \(\vec{a}+\vec{b}\) makes an angle \(60^{\circ}\) with \(\vec{a}\) then

1 \(|\overrightarrow{\mathrm{a}}|=2|\overrightarrow{\mathrm{b}}|\)
2 \(2|\vec{a}|=|\vec{b}|\)
3 \(|\vec{a}|=\sqrt{3}|\vec{b}|\)
4 \(\sqrt{3}|\vec{a}|=|\vec{b}|\)
Vector Algebra

87995 If \(|\vec{a}|=4,|\vec{b}|=2,|\vec{c}|=6\) and each of the angles between the vectors is \(60^{\circ}\), then \(|\vec{a}|+|\vec{b}|+|\vec{c}|=\)

1 10
2 \(\sqrt{56}\)
3 \(\sqrt{44}\)
4 5
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

87991 If \(\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{i}+\hat{k}\) are the position vectors of the vertices of a triangle \(A B C\) taken in order, then \(\angle \mathrm{A}\) is equal to

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{5}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{3}\)
Vector Algebra

87992 Let \(a, b\) and \(c\) be three vectors satisfying \(a \times b\) \(=(a \times c),|a|=|c|=1,|b|=4\) and \(|b \times c|=\sqrt{15}\). If \(b-2 c=\lambda a\), then \(\lambda\) equals

1 1
2 -1
3 2
4 -4
Vector Algebra

87993 If \(|\vec{a}|=3,|\vec{b}|=4\), then a value of \(\lambda\), for which \(\vec{a}+\lambda \vec{b}\) is perpendicular to \(\vec{a}-\lambda \vec{b}\)

1 \(\frac{9}{16}\)
2 \(\frac{3}{4}\)
3 \(\frac{3}{2}\)
4 \(\frac{3}{2}\)
Vector Algebra

87994 If \(\vec{a} \cdot \vec{b}=0\) and \(\vec{a}+\vec{b}\) makes an angle \(60^{\circ}\) with \(\vec{a}\) then

1 \(|\overrightarrow{\mathrm{a}}|=2|\overrightarrow{\mathrm{b}}|\)
2 \(2|\vec{a}|=|\vec{b}|\)
3 \(|\vec{a}|=\sqrt{3}|\vec{b}|\)
4 \(\sqrt{3}|\vec{a}|=|\vec{b}|\)
Vector Algebra

87995 If \(|\vec{a}|=4,|\vec{b}|=2,|\vec{c}|=6\) and each of the angles between the vectors is \(60^{\circ}\), then \(|\vec{a}|+|\vec{b}|+|\vec{c}|=\)

1 10
2 \(\sqrt{56}\)
3 \(\sqrt{44}\)
4 5
Vector Algebra

87991 If \(\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{i}+\hat{k}\) are the position vectors of the vertices of a triangle \(A B C\) taken in order, then \(\angle \mathrm{A}\) is equal to

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{5}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{3}\)
Vector Algebra

87992 Let \(a, b\) and \(c\) be three vectors satisfying \(a \times b\) \(=(a \times c),|a|=|c|=1,|b|=4\) and \(|b \times c|=\sqrt{15}\). If \(b-2 c=\lambda a\), then \(\lambda\) equals

1 1
2 -1
3 2
4 -4
Vector Algebra

87993 If \(|\vec{a}|=3,|\vec{b}|=4\), then a value of \(\lambda\), for which \(\vec{a}+\lambda \vec{b}\) is perpendicular to \(\vec{a}-\lambda \vec{b}\)

1 \(\frac{9}{16}\)
2 \(\frac{3}{4}\)
3 \(\frac{3}{2}\)
4 \(\frac{3}{2}\)
Vector Algebra

87994 If \(\vec{a} \cdot \vec{b}=0\) and \(\vec{a}+\vec{b}\) makes an angle \(60^{\circ}\) with \(\vec{a}\) then

1 \(|\overrightarrow{\mathrm{a}}|=2|\overrightarrow{\mathrm{b}}|\)
2 \(2|\vec{a}|=|\vec{b}|\)
3 \(|\vec{a}|=\sqrt{3}|\vec{b}|\)
4 \(\sqrt{3}|\vec{a}|=|\vec{b}|\)
Vector Algebra

87995 If \(|\vec{a}|=4,|\vec{b}|=2,|\vec{c}|=6\) and each of the angles between the vectors is \(60^{\circ}\), then \(|\vec{a}|+|\vec{b}|+|\vec{c}|=\)

1 10
2 \(\sqrt{56}\)
3 \(\sqrt{44}\)
4 5
Vector Algebra

87991 If \(\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{i}+\hat{k}\) are the position vectors of the vertices of a triangle \(A B C\) taken in order, then \(\angle \mathrm{A}\) is equal to

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{5}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{3}\)
Vector Algebra

87992 Let \(a, b\) and \(c\) be three vectors satisfying \(a \times b\) \(=(a \times c),|a|=|c|=1,|b|=4\) and \(|b \times c|=\sqrt{15}\). If \(b-2 c=\lambda a\), then \(\lambda\) equals

1 1
2 -1
3 2
4 -4
Vector Algebra

87993 If \(|\vec{a}|=3,|\vec{b}|=4\), then a value of \(\lambda\), for which \(\vec{a}+\lambda \vec{b}\) is perpendicular to \(\vec{a}-\lambda \vec{b}\)

1 \(\frac{9}{16}\)
2 \(\frac{3}{4}\)
3 \(\frac{3}{2}\)
4 \(\frac{3}{2}\)
Vector Algebra

87994 If \(\vec{a} \cdot \vec{b}=0\) and \(\vec{a}+\vec{b}\) makes an angle \(60^{\circ}\) with \(\vec{a}\) then

1 \(|\overrightarrow{\mathrm{a}}|=2|\overrightarrow{\mathrm{b}}|\)
2 \(2|\vec{a}|=|\vec{b}|\)
3 \(|\vec{a}|=\sqrt{3}|\vec{b}|\)
4 \(\sqrt{3}|\vec{a}|=|\vec{b}|\)
Vector Algebra

87995 If \(|\vec{a}|=4,|\vec{b}|=2,|\vec{c}|=6\) and each of the angles between the vectors is \(60^{\circ}\), then \(|\vec{a}|+|\vec{b}|+|\vec{c}|=\)

1 10
2 \(\sqrt{56}\)
3 \(\sqrt{44}\)
4 5