Scalar (dot) Product of Vector
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

87996 If \(|\vec{a}|=2,|\vec{b}|=7\) and \(\vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k}\), then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(\frac{\pi}{3}\)
2 \(\frac{\pi}{6}\)
3 \(\frac{\pi}{2}\)
4 \(\frac{\pi}{4}\)
Vector Algebra

87998 If \(\vec{a}\) and \(\vec{b}\) are two vectors of magnitude 2 , each inclined at an angle \(60^{\circ}\), then angle between \(\vec{a}\) and \(\vec{a}+\vec{b}\) is

1 \(30^{\circ}\)
2 \(45^{\circ}\)
3 \(60^{\circ}\)
4 \(90^{\circ}\)
Vector Algebra

87999 Find \(\sin \theta\),if \(\theta\) is the angle between the vectors \(3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}\) and \(\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}\).

1 \(\sqrt{\frac{5}{21}}\)
2 \(\frac{5}{\sqrt{21}}\)
3 \(\frac{4}{\sqrt{21}}\)
4 \(\sqrt{\frac{3}{21}}\)
Vector Algebra

88000 If \(\vec{a}\) and \(\vec{b}\) are two non-zero vectors such that \(|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|\) then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(\pi / 4\) only
2 \(\pi / 2\) only
3 \(3 \pi / 4\) only
4 \(\pi / 4\) or \(3 \pi / 4\)
Vector Algebra

87996 If \(|\vec{a}|=2,|\vec{b}|=7\) and \(\vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k}\), then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(\frac{\pi}{3}\)
2 \(\frac{\pi}{6}\)
3 \(\frac{\pi}{2}\)
4 \(\frac{\pi}{4}\)
Vector Algebra

87998 If \(\vec{a}\) and \(\vec{b}\) are two vectors of magnitude 2 , each inclined at an angle \(60^{\circ}\), then angle between \(\vec{a}\) and \(\vec{a}+\vec{b}\) is

1 \(30^{\circ}\)
2 \(45^{\circ}\)
3 \(60^{\circ}\)
4 \(90^{\circ}\)
Vector Algebra

87999 Find \(\sin \theta\),if \(\theta\) is the angle between the vectors \(3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}\) and \(\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}\).

1 \(\sqrt{\frac{5}{21}}\)
2 \(\frac{5}{\sqrt{21}}\)
3 \(\frac{4}{\sqrt{21}}\)
4 \(\sqrt{\frac{3}{21}}\)
Vector Algebra

88000 If \(\vec{a}\) and \(\vec{b}\) are two non-zero vectors such that \(|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|\) then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(\pi / 4\) only
2 \(\pi / 2\) only
3 \(3 \pi / 4\) only
4 \(\pi / 4\) or \(3 \pi / 4\)
Vector Algebra

87996 If \(|\vec{a}|=2,|\vec{b}|=7\) and \(\vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k}\), then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(\frac{\pi}{3}\)
2 \(\frac{\pi}{6}\)
3 \(\frac{\pi}{2}\)
4 \(\frac{\pi}{4}\)
Vector Algebra

87998 If \(\vec{a}\) and \(\vec{b}\) are two vectors of magnitude 2 , each inclined at an angle \(60^{\circ}\), then angle between \(\vec{a}\) and \(\vec{a}+\vec{b}\) is

1 \(30^{\circ}\)
2 \(45^{\circ}\)
3 \(60^{\circ}\)
4 \(90^{\circ}\)
Vector Algebra

87999 Find \(\sin \theta\),if \(\theta\) is the angle between the vectors \(3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}\) and \(\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}\).

1 \(\sqrt{\frac{5}{21}}\)
2 \(\frac{5}{\sqrt{21}}\)
3 \(\frac{4}{\sqrt{21}}\)
4 \(\sqrt{\frac{3}{21}}\)
Vector Algebra

88000 If \(\vec{a}\) and \(\vec{b}\) are two non-zero vectors such that \(|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|\) then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(\pi / 4\) only
2 \(\pi / 2\) only
3 \(3 \pi / 4\) only
4 \(\pi / 4\) or \(3 \pi / 4\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

87996 If \(|\vec{a}|=2,|\vec{b}|=7\) and \(\vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k}\), then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(\frac{\pi}{3}\)
2 \(\frac{\pi}{6}\)
3 \(\frac{\pi}{2}\)
4 \(\frac{\pi}{4}\)
Vector Algebra

87998 If \(\vec{a}\) and \(\vec{b}\) are two vectors of magnitude 2 , each inclined at an angle \(60^{\circ}\), then angle between \(\vec{a}\) and \(\vec{a}+\vec{b}\) is

1 \(30^{\circ}\)
2 \(45^{\circ}\)
3 \(60^{\circ}\)
4 \(90^{\circ}\)
Vector Algebra

87999 Find \(\sin \theta\),if \(\theta\) is the angle between the vectors \(3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}\) and \(\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}\).

1 \(\sqrt{\frac{5}{21}}\)
2 \(\frac{5}{\sqrt{21}}\)
3 \(\frac{4}{\sqrt{21}}\)
4 \(\sqrt{\frac{3}{21}}\)
Vector Algebra

88000 If \(\vec{a}\) and \(\vec{b}\) are two non-zero vectors such that \(|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|\) then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(\pi / 4\) only
2 \(\pi / 2\) only
3 \(3 \pi / 4\) only
4 \(\pi / 4\) or \(3 \pi / 4\)