NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Vector Algebra
87996
If \(|\vec{a}|=2,|\vec{b}|=7\) and \(\vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k}\), then the angle between \(\vec{a}\) and \(\vec{b}\) is
87998
If \(\vec{a}\) and \(\vec{b}\) are two vectors of magnitude 2 , each inclined at an angle \(60^{\circ}\), then angle between \(\vec{a}\) and \(\vec{a}+\vec{b}\) is
87999
Find \(\sin \theta\),if \(\theta\) is the angle between the vectors \(3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}\) and \(\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}\).
88000
If \(\vec{a}\) and \(\vec{b}\) are two non-zero vectors such that \(|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|\) then the angle between \(\vec{a}\) and \(\vec{b}\) is
87996
If \(|\vec{a}|=2,|\vec{b}|=7\) and \(\vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k}\), then the angle between \(\vec{a}\) and \(\vec{b}\) is
87998
If \(\vec{a}\) and \(\vec{b}\) are two vectors of magnitude 2 , each inclined at an angle \(60^{\circ}\), then angle between \(\vec{a}\) and \(\vec{a}+\vec{b}\) is
87999
Find \(\sin \theta\),if \(\theta\) is the angle between the vectors \(3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}\) and \(\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}\).
88000
If \(\vec{a}\) and \(\vec{b}\) are two non-zero vectors such that \(|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|\) then the angle between \(\vec{a}\) and \(\vec{b}\) is
87996
If \(|\vec{a}|=2,|\vec{b}|=7\) and \(\vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k}\), then the angle between \(\vec{a}\) and \(\vec{b}\) is
87998
If \(\vec{a}\) and \(\vec{b}\) are two vectors of magnitude 2 , each inclined at an angle \(60^{\circ}\), then angle between \(\vec{a}\) and \(\vec{a}+\vec{b}\) is
87999
Find \(\sin \theta\),if \(\theta\) is the angle between the vectors \(3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}\) and \(\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}\).
88000
If \(\vec{a}\) and \(\vec{b}\) are two non-zero vectors such that \(|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|\) then the angle between \(\vec{a}\) and \(\vec{b}\) is
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Vector Algebra
87996
If \(|\vec{a}|=2,|\vec{b}|=7\) and \(\vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k}\), then the angle between \(\vec{a}\) and \(\vec{b}\) is
87998
If \(\vec{a}\) and \(\vec{b}\) are two vectors of magnitude 2 , each inclined at an angle \(60^{\circ}\), then angle between \(\vec{a}\) and \(\vec{a}+\vec{b}\) is
87999
Find \(\sin \theta\),if \(\theta\) is the angle between the vectors \(3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}\) and \(\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}\).
88000
If \(\vec{a}\) and \(\vec{b}\) are two non-zero vectors such that \(|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|\) then the angle between \(\vec{a}\) and \(\vec{b}\) is