87966 If a→,b→,c→ are unit vectors such that a→+b→+c→=0→, then a→⋅b→+b→⋅c→+c→⋅a→=
(B) : Given,a→+b→+c→=0→a→⋅b→+b→⋅c→+c→⋅a→=?We know that(a→+b→+c→)⋅(a→+b→+c→)=0a→⋅a→+a→⋅b→+a→⋅c→+b→⋅a→+b→⋅b→+b→⋅c→+c→⋅a→+c→⋅b→+c→⋅c→=0|a→|2+2a→⋅b→+2c⋅a+|b→|2+2b→⋅c→+|c→|2=0∵ Given, |a→|=|b→|=|c→|=11+1+1+2(a→⋅b→+b→⋅c→+c→⋅a→)=02(a→⋅b→+b→⋅c→+c→⋅a→)=−3(a→⋅b→+b→⋅c→+c→⋅a→)=−32
87967 If (a→×b→)2+(a.b→)2=144 and |a→|=4, then |b→|=
(D) : Given,|a→|=4,|b→|=?(a→×b→)2+(a→⋅b→)2=144We know thata→×b→=|a→||b→|sinθa→⋅b→=|a→||b→|cosθ|a→|2|b→|2sin2θ+|a→|2|b→|2cos2θ=144|a→|2|b→|2(sin2θ+cos2θ)=144|a→|2|b→|2=144|a→||b→|=124|b→|=12|b→|=3
87969 The projection of a→=3i^−j^+5k^ on b→=2i^+3j^+k^ is
(A) : Given,a→=3i^−j^+5k^b→=2i^+3j^+k^We know thatThe projection of a→ and b→=a→⋅b→|b→|a→⋅b→=(3i^−j^+5k^)⋅(2i^+3j^+k^)=6i^⋅i^−3j^⋅j^+5k^⋅k^(∵i^⋅i^=j^⋅j^=k^⋅k^=1)∴a→⋅b→=8b→=2i→+3j→+k→|b→|=22+32+1=14Projection of a→ and b→=814
87970 If a→ is vector perpendicular to both b→ and c→, then
(C) : Given,a→ is perpendicular to both b→ and c→a→×(b→×c→)=(a→⋅c→)⋅b→−(a→⋅b→)⋅c→∵(a→⋅b→=0→,a→⋅c→=0→)=0→−0→a→×(b→×c→)=0→