Scalar (dot) Product of Vector
Vector Algebra

87961 If \(|\vec{a}|=16,|\vec{b}|=4\), then \(\sqrt{|\vec{a} \times \vec{b}|^2+|\vec{a} \cdot \vec{b}|^2}=\)

1 4
2 16
3 8
4 64
Vector Algebra

87962 If \(\vec{a}=\hat{i}+\lambda \hat{j}+2 \hat{k} ; \vec{b}=\mu \hat{i}+\hat{j}-\hat{k}\) are orthogonal and \(|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|\), then \((\lambda, \mu)=\)

1 \(\left(\frac{1}{4}, \frac{7}{4}\right)\)
2 \(\left(\frac{7}{4}, \frac{1}{4}\right)\)
3 \(\left(\frac{1}{4}, \frac{9}{4}\right)\)
4 \(\left(\frac{-1}{4}, \frac{9}{4}\right)\)
Vector Algebra

87963 If \(\vec{a}\) and \(\vec{b}\) are mutually perpendicular unit vectors, then \((3 \vec{a}+2 \vec{b}) \cdot(5 \vec{a}-6 \vec{b})=\)

1 5
2 3
3 6
4 12
Vector Algebra

87964 If \(\overrightarrow{\mathbf{a}}=2 \hat{\mathrm{i}}+\lambda \hat{\mathrm{j}}+\hat{\mathrm{k}}\) and \(\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}\) are orthogonal, then value of \(\lambda\) is

1 \(\frac{3}{2}\)
2 1
3 \(-\frac{5}{2}\)
4 0
Vector Algebra

87965 Let \(\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}\). If \(\vec{b}\) is a vector such that \(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{b}}|^2\) and \(|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathrm{b}}|=\sqrt{7}\), then \(|\overrightarrow{\mathrm{b}}|=\)

1 14
2 21
3 7
4 \(\sqrt{7}\)
Vector Algebra

87961 If \(|\vec{a}|=16,|\vec{b}|=4\), then \(\sqrt{|\vec{a} \times \vec{b}|^2+|\vec{a} \cdot \vec{b}|^2}=\)

1 4
2 16
3 8
4 64
Vector Algebra

87962 If \(\vec{a}=\hat{i}+\lambda \hat{j}+2 \hat{k} ; \vec{b}=\mu \hat{i}+\hat{j}-\hat{k}\) are orthogonal and \(|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|\), then \((\lambda, \mu)=\)

1 \(\left(\frac{1}{4}, \frac{7}{4}\right)\)
2 \(\left(\frac{7}{4}, \frac{1}{4}\right)\)
3 \(\left(\frac{1}{4}, \frac{9}{4}\right)\)
4 \(\left(\frac{-1}{4}, \frac{9}{4}\right)\)
Vector Algebra

87963 If \(\vec{a}\) and \(\vec{b}\) are mutually perpendicular unit vectors, then \((3 \vec{a}+2 \vec{b}) \cdot(5 \vec{a}-6 \vec{b})=\)

1 5
2 3
3 6
4 12
Vector Algebra

87964 If \(\overrightarrow{\mathbf{a}}=2 \hat{\mathrm{i}}+\lambda \hat{\mathrm{j}}+\hat{\mathrm{k}}\) and \(\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}\) are orthogonal, then value of \(\lambda\) is

1 \(\frac{3}{2}\)
2 1
3 \(-\frac{5}{2}\)
4 0
Vector Algebra

87965 Let \(\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}\). If \(\vec{b}\) is a vector such that \(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{b}}|^2\) and \(|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathrm{b}}|=\sqrt{7}\), then \(|\overrightarrow{\mathrm{b}}|=\)

1 14
2 21
3 7
4 \(\sqrt{7}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

87961 If \(|\vec{a}|=16,|\vec{b}|=4\), then \(\sqrt{|\vec{a} \times \vec{b}|^2+|\vec{a} \cdot \vec{b}|^2}=\)

1 4
2 16
3 8
4 64
Vector Algebra

87962 If \(\vec{a}=\hat{i}+\lambda \hat{j}+2 \hat{k} ; \vec{b}=\mu \hat{i}+\hat{j}-\hat{k}\) are orthogonal and \(|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|\), then \((\lambda, \mu)=\)

1 \(\left(\frac{1}{4}, \frac{7}{4}\right)\)
2 \(\left(\frac{7}{4}, \frac{1}{4}\right)\)
3 \(\left(\frac{1}{4}, \frac{9}{4}\right)\)
4 \(\left(\frac{-1}{4}, \frac{9}{4}\right)\)
Vector Algebra

87963 If \(\vec{a}\) and \(\vec{b}\) are mutually perpendicular unit vectors, then \((3 \vec{a}+2 \vec{b}) \cdot(5 \vec{a}-6 \vec{b})=\)

1 5
2 3
3 6
4 12
Vector Algebra

87964 If \(\overrightarrow{\mathbf{a}}=2 \hat{\mathrm{i}}+\lambda \hat{\mathrm{j}}+\hat{\mathrm{k}}\) and \(\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}\) are orthogonal, then value of \(\lambda\) is

1 \(\frac{3}{2}\)
2 1
3 \(-\frac{5}{2}\)
4 0
Vector Algebra

87965 Let \(\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}\). If \(\vec{b}\) is a vector such that \(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{b}}|^2\) and \(|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathrm{b}}|=\sqrt{7}\), then \(|\overrightarrow{\mathrm{b}}|=\)

1 14
2 21
3 7
4 \(\sqrt{7}\)
Vector Algebra

87961 If \(|\vec{a}|=16,|\vec{b}|=4\), then \(\sqrt{|\vec{a} \times \vec{b}|^2+|\vec{a} \cdot \vec{b}|^2}=\)

1 4
2 16
3 8
4 64
Vector Algebra

87962 If \(\vec{a}=\hat{i}+\lambda \hat{j}+2 \hat{k} ; \vec{b}=\mu \hat{i}+\hat{j}-\hat{k}\) are orthogonal and \(|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|\), then \((\lambda, \mu)=\)

1 \(\left(\frac{1}{4}, \frac{7}{4}\right)\)
2 \(\left(\frac{7}{4}, \frac{1}{4}\right)\)
3 \(\left(\frac{1}{4}, \frac{9}{4}\right)\)
4 \(\left(\frac{-1}{4}, \frac{9}{4}\right)\)
Vector Algebra

87963 If \(\vec{a}\) and \(\vec{b}\) are mutually perpendicular unit vectors, then \((3 \vec{a}+2 \vec{b}) \cdot(5 \vec{a}-6 \vec{b})=\)

1 5
2 3
3 6
4 12
Vector Algebra

87964 If \(\overrightarrow{\mathbf{a}}=2 \hat{\mathrm{i}}+\lambda \hat{\mathrm{j}}+\hat{\mathrm{k}}\) and \(\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}\) are orthogonal, then value of \(\lambda\) is

1 \(\frac{3}{2}\)
2 1
3 \(-\frac{5}{2}\)
4 0
Vector Algebra

87965 Let \(\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}\). If \(\vec{b}\) is a vector such that \(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{b}}|^2\) and \(|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathrm{b}}|=\sqrt{7}\), then \(|\overrightarrow{\mathrm{b}}|=\)

1 14
2 21
3 7
4 \(\sqrt{7}\)
Vector Algebra

87961 If \(|\vec{a}|=16,|\vec{b}|=4\), then \(\sqrt{|\vec{a} \times \vec{b}|^2+|\vec{a} \cdot \vec{b}|^2}=\)

1 4
2 16
3 8
4 64
Vector Algebra

87962 If \(\vec{a}=\hat{i}+\lambda \hat{j}+2 \hat{k} ; \vec{b}=\mu \hat{i}+\hat{j}-\hat{k}\) are orthogonal and \(|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|\), then \((\lambda, \mu)=\)

1 \(\left(\frac{1}{4}, \frac{7}{4}\right)\)
2 \(\left(\frac{7}{4}, \frac{1}{4}\right)\)
3 \(\left(\frac{1}{4}, \frac{9}{4}\right)\)
4 \(\left(\frac{-1}{4}, \frac{9}{4}\right)\)
Vector Algebra

87963 If \(\vec{a}\) and \(\vec{b}\) are mutually perpendicular unit vectors, then \((3 \vec{a}+2 \vec{b}) \cdot(5 \vec{a}-6 \vec{b})=\)

1 5
2 3
3 6
4 12
Vector Algebra

87964 If \(\overrightarrow{\mathbf{a}}=2 \hat{\mathrm{i}}+\lambda \hat{\mathrm{j}}+\hat{\mathrm{k}}\) and \(\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}\) are orthogonal, then value of \(\lambda\) is

1 \(\frac{3}{2}\)
2 1
3 \(-\frac{5}{2}\)
4 0
Vector Algebra

87965 Let \(\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}\). If \(\vec{b}\) is a vector such that \(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{b}}|^2\) and \(|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathrm{b}}|=\sqrt{7}\), then \(|\overrightarrow{\mathrm{b}}|=\)

1 14
2 21
3 7
4 \(\sqrt{7}\)