87965 Let \(\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}\). If \(\vec{b}\) is a vector such that \(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{b}}|^2\) and \(|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathrm{b}}|=\sqrt{7}\), then \(|\overrightarrow{\mathrm{b}}|=\)
87965 Let \(\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}\). If \(\vec{b}\) is a vector such that \(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{b}}|^2\) and \(|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathrm{b}}|=\sqrt{7}\), then \(|\overrightarrow{\mathrm{b}}|=\)
87965 Let \(\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}\). If \(\vec{b}\) is a vector such that \(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{b}}|^2\) and \(|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathrm{b}}|=\sqrt{7}\), then \(|\overrightarrow{\mathrm{b}}|=\)
87965 Let \(\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}\). If \(\vec{b}\) is a vector such that \(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{b}}|^2\) and \(|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathrm{b}}|=\sqrt{7}\), then \(|\overrightarrow{\mathrm{b}}|=\)
87965 Let \(\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}\). If \(\vec{b}\) is a vector such that \(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{b}}|^2\) and \(|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathrm{b}}|=\sqrt{7}\), then \(|\overrightarrow{\mathrm{b}}|=\)