Directions Cosine and Ratios of Vector
Vector Algebra

87890 The vector equation of the plane through the point \(\hat{\mathbf{i}}+\mathbf{2} \hat{\mathbf{j}}-\hat{\mathbf{k}}\) and perpendicular to the line of intersection of the plane \(r .(3 \hat{i}-\hat{j}+\hat{k})=1\) and \(\mathbf{r} \cdot(\hat{\mathbf{i}}+\mathbf{4} \hat{\mathbf{j}}-\mathbf{2} \hat{\mathbf{k}})=\mathbf{2}\) is

1 \(r .(2 \hat{i}+7 \hat{j}-13 \hat{k})=1\)
2 \(r \cdot(2 \hat{i}-7 \hat{j}-13 \hat{k})=1\)
3 r. \((2 \hat{i}+7 \hat{j}+13 \hat{k})=0\)
4 None of the above
Vector Algebra

87891 A vector perpendicular to the plane containing the points \(A(1,-1,2), B(2,0,-1), C(0,2,1)\) is

1 \(4 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}\)
2 \(8 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}\)
3 \(3 \hat{i}+\hat{j}+2 \hat{k}\)
4 \(\hat{i}+\hat{j}-\hat{k}\)
Vector Algebra

87892 a, b, c are three vectors such that \(|a|=3,|b|=5\), \(|c|=7\). If \(a, b, c\) are perpendicular to the vectors \(\mathbf{b}+\mathbf{c}, \mathbf{c}+\mathbf{a}, \mathbf{a}+\mathbf{b}\) respectively, then \(\sqrt{(a+b+c)^2}-2=\)

1 15
2 9
3 22
4 25
Vector Algebra

87893 The set of real values of \(\lambda\) for which the vectors \(\lambda \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}\) and \(2 \lambda \hat{\mathbf{i}}-\lambda \hat{\mathbf{j}}-\hat{\mathbf{k}}\) are perpendicular to each other is

1 \(\{0,1\}\)
2 \(\{-2\}\)
3 \(\{2,-1\}\)
4 \(\phi\)
Vector Algebra

87890 The vector equation of the plane through the point \(\hat{\mathbf{i}}+\mathbf{2} \hat{\mathbf{j}}-\hat{\mathbf{k}}\) and perpendicular to the line of intersection of the plane \(r .(3 \hat{i}-\hat{j}+\hat{k})=1\) and \(\mathbf{r} \cdot(\hat{\mathbf{i}}+\mathbf{4} \hat{\mathbf{j}}-\mathbf{2} \hat{\mathbf{k}})=\mathbf{2}\) is

1 \(r .(2 \hat{i}+7 \hat{j}-13 \hat{k})=1\)
2 \(r \cdot(2 \hat{i}-7 \hat{j}-13 \hat{k})=1\)
3 r. \((2 \hat{i}+7 \hat{j}+13 \hat{k})=0\)
4 None of the above
Vector Algebra

87891 A vector perpendicular to the plane containing the points \(A(1,-1,2), B(2,0,-1), C(0,2,1)\) is

1 \(4 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}\)
2 \(8 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}\)
3 \(3 \hat{i}+\hat{j}+2 \hat{k}\)
4 \(\hat{i}+\hat{j}-\hat{k}\)
Vector Algebra

87892 a, b, c are three vectors such that \(|a|=3,|b|=5\), \(|c|=7\). If \(a, b, c\) are perpendicular to the vectors \(\mathbf{b}+\mathbf{c}, \mathbf{c}+\mathbf{a}, \mathbf{a}+\mathbf{b}\) respectively, then \(\sqrt{(a+b+c)^2}-2=\)

1 15
2 9
3 22
4 25
Vector Algebra

87893 The set of real values of \(\lambda\) for which the vectors \(\lambda \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}\) and \(2 \lambda \hat{\mathbf{i}}-\lambda \hat{\mathbf{j}}-\hat{\mathbf{k}}\) are perpendicular to each other is

1 \(\{0,1\}\)
2 \(\{-2\}\)
3 \(\{2,-1\}\)
4 \(\phi\)
Vector Algebra

87890 The vector equation of the plane through the point \(\hat{\mathbf{i}}+\mathbf{2} \hat{\mathbf{j}}-\hat{\mathbf{k}}\) and perpendicular to the line of intersection of the plane \(r .(3 \hat{i}-\hat{j}+\hat{k})=1\) and \(\mathbf{r} \cdot(\hat{\mathbf{i}}+\mathbf{4} \hat{\mathbf{j}}-\mathbf{2} \hat{\mathbf{k}})=\mathbf{2}\) is

1 \(r .(2 \hat{i}+7 \hat{j}-13 \hat{k})=1\)
2 \(r \cdot(2 \hat{i}-7 \hat{j}-13 \hat{k})=1\)
3 r. \((2 \hat{i}+7 \hat{j}+13 \hat{k})=0\)
4 None of the above
Vector Algebra

87891 A vector perpendicular to the plane containing the points \(A(1,-1,2), B(2,0,-1), C(0,2,1)\) is

1 \(4 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}\)
2 \(8 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}\)
3 \(3 \hat{i}+\hat{j}+2 \hat{k}\)
4 \(\hat{i}+\hat{j}-\hat{k}\)
Vector Algebra

87892 a, b, c are three vectors such that \(|a|=3,|b|=5\), \(|c|=7\). If \(a, b, c\) are perpendicular to the vectors \(\mathbf{b}+\mathbf{c}, \mathbf{c}+\mathbf{a}, \mathbf{a}+\mathbf{b}\) respectively, then \(\sqrt{(a+b+c)^2}-2=\)

1 15
2 9
3 22
4 25
Vector Algebra

87893 The set of real values of \(\lambda\) for which the vectors \(\lambda \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}\) and \(2 \lambda \hat{\mathbf{i}}-\lambda \hat{\mathbf{j}}-\hat{\mathbf{k}}\) are perpendicular to each other is

1 \(\{0,1\}\)
2 \(\{-2\}\)
3 \(\{2,-1\}\)
4 \(\phi\)
Vector Algebra

87890 The vector equation of the plane through the point \(\hat{\mathbf{i}}+\mathbf{2} \hat{\mathbf{j}}-\hat{\mathbf{k}}\) and perpendicular to the line of intersection of the plane \(r .(3 \hat{i}-\hat{j}+\hat{k})=1\) and \(\mathbf{r} \cdot(\hat{\mathbf{i}}+\mathbf{4} \hat{\mathbf{j}}-\mathbf{2} \hat{\mathbf{k}})=\mathbf{2}\) is

1 \(r .(2 \hat{i}+7 \hat{j}-13 \hat{k})=1\)
2 \(r \cdot(2 \hat{i}-7 \hat{j}-13 \hat{k})=1\)
3 r. \((2 \hat{i}+7 \hat{j}+13 \hat{k})=0\)
4 None of the above
Vector Algebra

87891 A vector perpendicular to the plane containing the points \(A(1,-1,2), B(2,0,-1), C(0,2,1)\) is

1 \(4 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}\)
2 \(8 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}\)
3 \(3 \hat{i}+\hat{j}+2 \hat{k}\)
4 \(\hat{i}+\hat{j}-\hat{k}\)
Vector Algebra

87892 a, b, c are three vectors such that \(|a|=3,|b|=5\), \(|c|=7\). If \(a, b, c\) are perpendicular to the vectors \(\mathbf{b}+\mathbf{c}, \mathbf{c}+\mathbf{a}, \mathbf{a}+\mathbf{b}\) respectively, then \(\sqrt{(a+b+c)^2}-2=\)

1 15
2 9
3 22
4 25
Vector Algebra

87893 The set of real values of \(\lambda\) for which the vectors \(\lambda \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}\) and \(2 \lambda \hat{\mathbf{i}}-\lambda \hat{\mathbf{j}}-\hat{\mathbf{k}}\) are perpendicular to each other is

1 \(\{0,1\}\)
2 \(\{-2\}\)
3 \(\{2,-1\}\)
4 \(\phi\)